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GENERAL INTRODUCTION

General Background and Objectives

In this dissertation, inventory, investment, and pricing policies for lot-size decision
makers are examined based on classical economic order quantity (EOQ; see e.g., Hillier
and Lieberman 1995). Specifically, we focus on investment in setup operations, invest-
ment in quality improvement, and market dependent products such as substitutes and
complements. We examine various impacts of investment and competition on inventory
policies and derive managerial insights and economic implications. Throughout this
dissertation, deterministic mathematical programming is used as the primary analysis
technique and optimal policies are obtained through this technique.

The primary objectives and contributions of this dissertation are as follows: Qur
objectives consist of examination of 1) inventory and investment relationships as well as
2) inventory and competition relationships.

For the inventory and investment relationships, we construct and analyze inventory
and investment in setup operations policies, inventory and investment in quality im-

provement policies, and inventory and capital investment allocation policies in setup




and quality operations under return on investment (ROI) maximization, where ROI is
defined as the ratio of profit to average investment. In each analysis, we consider the
benchmark problem, in which a decision maker does not have an option to invest any
additional money. Based on this problem, we consider the another problem, in which
a decision maker has an option to invest additional money in setup operations and/or
quality improvement. The resulting contributions are the establishment of an ROI model
with/without the capital budget constraints and characterization of the unique global
optimal solution when there exists an option to invest in setup operations. We also
show how the inventory level is reduced when it is optimal to invest additional money
in setup operations and/or quality improvement. Furthermore, we are comparing and
contrasting inventory and investment policies under ROI maximization with those poli-
cies under other economic/finance performance criteria such as cost minimization and
profit maximization.

For the inventory and competition relationships, on the other hand, we design and
analyze two duopoly (two sellers) models for two profit maximizing sellers when prod-
ucts are substitutes or complements. Competition is characterized by the Cournot-type
model, in which each firm predicts the other firm’s quantity first in deciding its own
quantity, and the Bertrand-type model, in which Each firm predicts the other firm’s
price first in deciding its own price. The resulting contributions are formulation of in-
ventory and pricing policies for substitutes and complements. Furthermore, we obtain
the closed-form inventory and pricing policies at equilibrium when symmetric demand

and cost are assumed.




Now, we focus on overall background for this dissertation. Traditionally, there are
numerous papers analyzing cost minimization and profit maximization, and ROI max-
imization as economic/finance performance criteria (see e.g., Schroeder and Krishnan
1976). Furthermore, there are numerous papers analyzing setup cost reduction inven-
tory models, quality improvement inventory models and capital allocation inventory
models (see e.g., Porteus 1985; Lee and Rosenblatt 1985; Hong, Xu, and Hayya 1993).
Given price and demand rate, however, in deciding the optimal level of investment
for quality improvement and setup operations, it would be inherently suboptimal for
ROI maximizing decision makers to utilize the existing models constructed for cost-
minimizing/profit-maximizing decision makers. This dissertation is motivated by the
lack of mathematical models with ROI as an economic/finance performance criterion
when the option of investing in quality improvement and/or setup operations exists.

The just-in-time (JIT) or zero inventory philosophy leads to reduction in the lot size
as small as possible. I[nvesting in setup operations is an important aspect of the JIT
philosophy. However, when a production process is not reliable, the JIT philosophy is
not efficient, e.g., loss of sales. Hence, it is also important to consider investment in
quality improvement to apply for the JIT philosophy (see e.g., Voss 1987).

Also, in this dissertation, competition is characterized by duopoly (two sellers), a
Cournot-type model and a Bertrand-type model (see e.g., Varian 1992). Furthermore,
characterization of products used for duopoiy models in this dissertation is considered as
substitutes and complements. Substitutes are products that can be substituted for each

other such as coffee and tea. On the other hand, complements are products that can be




used together such as coffee and sugar. Each seller is assumed to produce one product,
and his competitor is assumed to produce substitutes or complements. Even though
there have been extensive studies of substitutes and complements in the literature of
economic theory, to my knowledge, there have been few papers dealing with substitutes
and complements in the context of inventory policies. Hence, given the prevalence of
substitutes and complements in the real world, it is highly desirable to derive economic
implications and managerial insights in the context of inventory. In thses analyses, profit
maximization is used as economic/finance performance criterion.

Finally, we note that the classical EOQ model has been studied continuously for
several decades and numerous extensions have been made (see e.g., Arcelus and Rowcroft
1992). Furthermore, various papers in the industrial engineering literature have utilized
the EOQ type models or measured their own models against EOQ type models (e.g.,
Liao and Shyu 1991; Johnson and Montgomery 1994). Likewise, in this dissertation, we
attempt to preserve the general framework of the EOQ model as much as possible, while
extending it to the case of inventory, investment, and pricing policies.

Thus far, we have discussed overall objectives, key contributions, and background.
Let us now proceed to discuss the overall scope of this dissertation. First of all, all
variables and parameters are assumed to be deterministic. Under a traditional EOQ
model, the demand rate of product is considered to be constant and deterministic because
the lifetime of product is assumed at maturity for the product life cycle, development
— growth - shakeout — maturity — saturation (see e.g., Nahmias 1989). As a dependent

demand system, in an integrated manufacture system including the wholesale and retail




level, the production-lot-sizing decisions at one level of the system result in the demand
patterns at other levels. The interaction between them plays an important role and this
is called materials requirements planning systems (MRP; see e.g., Nahmias 1989). In
this dissertation, we will not focus on dependent demand system such as MRP.

Now, let us examine cost components in this dissertation. Under the profit max-
imization model (see e.g., Whitin 1955; Ladany and Sternlieb 1974), there are three
components of the total cost: the holding cost, the setup cost, and the unit variable
cost. The holding cost is the cost of warehousing, taxes and insurance, damaging or los-
ing, and any other cost directly related to the amount of inventory on hand. The setup
cost is the fixed cost independent of the size of the order such as machine changeovers,
postage, and telephone calls. The unit variable cost is the cost depending on the amount
of inventory procured. Under the ROl maximization model (see e.g., Schroeder and
Krishnan 1976; Rosenberg 1991), in addition to the above three components, we will
consider capital investment in setup operations and/or quality improvement.

As for additional assumptions in this dissertation, we follow the traditional inventory
assumptions such as the replenishment rate is infinite, no shortage is allowed, and there
is no delivery lag unless otherwise specified. If the replenishment rate is considered to
be infinite, this is good approximation when the production rate is much larger than
the demand rate (see e.g, Nahmias 1989; Banks and Fabrycky 1987). Also, if a shortage
occurs, the penalty cost is imposed because there is not sufficient stock on hand to meet
a demand. Since we assume the constant and deterministic demand, it is reasonable to

assume that there is no shortage. Furthermore, it is very difficult in practice to estimate



the loss-of-goodwill of the penalty cost. Finally, another assumption of the traditional
EOQ model is that there is no delivery lag. In order to eliminate variability of the
delivery lag, close cooperation with suppliers is required in the traditional EOQ model
(see e.g., Nahmias 1989; Silver and Peterson 1985). In addition, it does not consider
strikes and weather problems to cause delivery delays periodically in this dissertation.

Additional issues regarding our scope of this dissertation are as follows: Under the
inventory control, estimates of future demand by forecasting techniques, such as a mov-
ing average forecast and an exponential smoothing forecast, are the initial stage for
production scheduling and pl%mning (see Silver and Peterson 1985). Nevertheless, since
we consider the constant deterministic demand, we don’t further analyze any details in
this field. Also, off-setting factors for the inventory control (e.g., discounts and rebates)
have been considered as an all-units discount model or an incremental discount model.
Under the traditional EOQ model, the unit variable cost is independent of the size of
the order so that there is no off-setting factor.

Furthermore, under inflationary economic conditions, traditional inventory models
are developed (see e.g., Hariga 1994). However, with current small scale of inflation
relative to 1970s and 1980s, both inflation and time value of money are disregarded in
this dissertation. Most senior managers view today that keeping inventories does not
lead to a measure of wealth but a large potential risk. However, we don’t consider risk
for firms or sellers through this dissertation. In addition, we note that location theory of
sellers has been widely analyzed in the literature of Economics, Finance, and Marketing.

However, we do not consider the impact on the location of sellers (e.g., the impact of
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distance to the closest site) throughout this dissertation. Also, the costs of two sellers
are considered to be the same in a symmetric cost case. This indicates that even though
functionally there are the same products, these are different such as color.

Finally, from the above overall scope, we summarize scope and usage of each chapter

in Table | and Table 2.

Dissertation Organization

Thus far, we have discussed overall backgrounds, objectives, key contributions and
scope of this dissertation. Now, we explain the organization of the dissertation. This
dissertation consists of six papers published, prepared for submission or submitted in
some proceedings and journals.

[n Chapter 1, titled “Inventory and [nvestment in Quality Improvement under Re-
turn on [nvestment Maximization,” we construct and analyze inventory and investment
in quality improvement policies under return on investment (ROI) maximization. In
this paper, a decision maker has an option to invest additional money in quality im-
provement. We formulate the ROI model and characterize the unique optimal policies
consisting of the order quantity and the level of investment in quality improvement.
Furthermore, based on no option to invest additional money in quality improvement, we
show how inventory is reduced when it is optimal to invest additional money in qual-
ity improvement. In addition, we derive closed-form optimal policies and managerial

insights when the setup cost is a linear function of the level of investment.




Table 1 Scope of inventory model and usage in each chapter

Chapter 1 | Chapter 2 | Chapter 3
Single product Yes Yes Yes
Budget constraints No No Yes
Space constraints No No No
Infinite replenishment rate Yes Yes Yes
Infinite time horizon Yes Yes Yes
Quantity discount No No No
Monopoly Yes Yes Yes
Duopoly No No No
Oligopoly No No No
Perfect competition No No No
Shortage No No No
Lead time No No No
Static demand Yes Yes Yes
Static production rate Yes Yes Yes
Total cost minimization No No No
Profit maximization No No No
ROI maximization Yes Yes Yes
Setup cost reduction No Yes Yes
Perfect product quality No Yes No
Capital investment Yes Yes Yes
Characterization of product No No No




Table 2 Scope of inventory model and usage in each chapter

Chapter 4 | Chapter 5 [ Chapter 6
Single product Yes Yes Yes
Budget constraints No No No
Space constraints No No No
Infinite replenishment rate Yes Yes Yes
Infinite time horizon Yes Yes Yes
Quantity discount No No No
Monopoly Yes No No
Duopoly No Yes Yes
Oligopoly No No No
Perfect competition No No No
Shortage No No No
Lead time No No No
Static demand Yes Yes Yes
Static production rate Yes Yes Yes
Total cost minimization No No No
Profit maximization Yes Yes Yes
ROI maximization Yes No No
Setup cost reduction Yes No No
Perfect product quality Yes Yes Yes
Capital investment Yes No No
Characterization of product No Yes Yes
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In Chapter 2. titled “Inventory and I[nvestment in Setup Operations under Return
on Investment Maximization,” we construct and analyze inventory and investment in
setup operations policies under return on investment (ROI) maximization. We follow
the basic model formulation of ROI maximization considered by Chen and Min (see
Chen 1995). [n this paper, a decision maker has an option to invest additional money
in setup operations. We formulate the ROI model and characterize the unique optimal
policies consisting of the order quantity and the level of investment in setup operations.
Furthermore, based on no option to invest additional money in setup operations, we
show how inventory is reduced when it is optimal to invest additional money in setup
operations. [n addition, we derive closed-form optimal policies and managerial insights
when the setup cost is a rational or linear function of the level of investment.

[n Chapter 3, titled “Inventory and Capital Investment Allocation Policies under
Return on [nvestment Maximization.” we construct and analyze inventory and capital
investment allocation policies under return on investment (ROI) maximization. Qur
model is constructed for a decision maker of a single product with a budget constraint
in capital investment. We show how the levels for the prior and posterior order quantities
are reduced when it is optimal to invest additional money in setup cost reduction and/or
quality improvement. [n addition, the unique global optimal solution is determined by
employing the primary criterion of ROI maximization, the secondary criterion of the
posterior order quantity minimization (i.e.. inventory reduction), and the third criterion
of the prior order quantity minimization. Moreover, we illustrate a numerical example

to show sensitivity analysis of unit variable cost.
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[n Chapter 4, titled “Inventory and Investment in Setup Operations under Profit
and ROI[ Maximization,” we investigate inventory and investment in setup operations
policies under a profit maximization model and a return on investment (ROI) maxi-
mization model. As in Chapter 2, we follow the basic model formulations of profit/ROI
maximization (see Chen’s dissertation). Based on these formulations, we examine the
corresponding optimality conditions and study how inventory is reduced when it is op-
timal to invest additional money in setup operations. Furthermore, we compare and
contrast the inventory reduction between the profit model and the ROI model.

[n Chapter 35, titled *“Inventory and Pricing Policies for a Duopoly of Substitute
Products,” we design and analyze two duopoly models for two profit maximizing sellers.
Each seller is assumed to produce one product, and his competitor is assumed to produce
a substitute. [n characterizing the competitive behavior of each seller, we employ a
Cournot-type model and a Bertrand-type model and we derive the equilibrium conditions
for both models. Dependency of demand and price are expressed by the linear demand
functions, which are widely found in the literature of economics.

[n Chapter 6, titled “Inventory and Pricing Policies for a Duopoly of Complements,”
we design and analyze two duopoly models for two competing sellers. Each seller is
assumed to be a profit maximizing EOQ-based decision maker facing linear demand
functions. In this paper, based on Cournot-type and Bertrand-type competitive behav-
ioral assumptions, we design and analyze pricing and inventory policies for two sellers.
Each seller is assumed to produce one product, and his competitor is assumed to produce

a complement. As mentioned before, dependency of demand and price are expressed by




!

the linear demand functions.

Finally, general concluding remarks in this dissertation are described including chap-
ter reviews and further research followed by references cited in general introduction and
general concluding remarks. Overall structure and chapter relationships are summarized

in Figure 1.




Chapter L:
Investment in quality
improvement
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Chapter 2:
Investment in setup operations

Chapter 3:

Investment and capital

allocations

Inventory Reduction

Chapter 5:
Substitute

Chapter 6:
Complement

Market dependent products

Chapter 4:
Different performance criteria

Figure 1 Overall structure and chapter relationships
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CHAPTER 1. INVENTORY AND INVESTMENT
IN QUALITY IMPROVEMENT
UNDER RETURN ON INVESTMENT MAXIMIZATION

A paper submitted to [EEE Transactions on Engineering Management

Toshitsugu Otake and K. Jo Min

Abstract

In this paper, we construct and analyze inventory and investment in quality im-
provement policies under return on investment (ROI) maximization. In our model, the
level of quality is represented by the fraction of an order quantity meeting the quality
requirements such as product specifications. The key contributions of this paper are
the establishment of an ROI model and characterization of the unique global optimal
solution. We also show how the inventory level is reduced when it is optimal to invest
additional money in quality improvement. In addition, we derive the unique global op-
timal solutions in closed-form when the investment in quality improvement is a linear
function of the quality. Various interesting managerial insights and a numerical example

are provided.
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1. Introduction

In this paper, we construct and analyze inventory and investment in quality improve-
ment policies under return on investment (ROI) maximization for a decision maker of an
inventory system with a single product. By quality in this paper, we mean the fraction of
an order quantity meeting the quality requirements such as product specifications. The
primary contributions of this paper are: (1) Formulation of the ROI model and charac-
terization of the unique optimal policies consisting of the levels of order quantity and
investment in quality improvement, (2) Characterization of inventory reduction when
it is optimal to invest additional money in quality improvement, and (3) Closed-form
optimal policies and managerial insights when the investment in quality improvement is
a linear function of the quality.

We will now provide the background information for the quality first, the relation
between the quality and inventory reduction next. followed by the performance criterion
of ROI maximization.

The quality issues for a product in an inventory system have been extensively stud-
ied. For example, Lee and Rosenblatt (1985) examine optimal inspection and ordering
policies for products with imperfect quality. On the other hand, Cheng (1991) inves-
tigates an Economic Production Quantity (EPQ) model with process capability and
quality assurance considerations. We note that both papers utilize the fraction of an
order quantity that is acceptable (or unacceptable) to indicate the level of quality. Sim-
ilarly, in our model, we represent the level of quality by the fraction of an order quantity

meeting the quality requirements such as product specifications. Hence, the quality im-
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provement implies an increase in this fraction. Furthermore, we assume that the quality
improvement can be achieved by additional investment in equipment and training.

The relation between the quality and inventory reduction is critical for both practi-
tioners and academics because numerous modern production systems advocate reduction
in inventory and improvement in quality. For example, Voss (1987) claims that Just-In-
Time production systems lead to increased quality and reduced inventory. In addition,
Kekre and Mukhopadhyay (1992) show that there exists a negz;.tive relationship between
inventory and quality based on empirical results. Moreover, Porteus (1986) studies
the process quality improvement and the order quantity in conjunction with setup cost
reduction. This work is extended by Hong and Hayya (1995) by considering budget con-
straints on quality improvement and setup reduction. For the last two papers, we note
that the definition of quality is based on a Markovian process model for the probability
of the production process becoming out of control, which is a fundamentally different
way of looking at the quality of a production system (cf. the definition of quality in Lee
and Rosenblatt (1985), Cheng (1991), and this paper).

ROl is a widely utilized economic performance measure dealing with finished goods
inventories (see e.g., Schroeder and Krishnan 1976; Morse and Scheiner 1979; and Reece
and Cool 1978). Traditionally, numerous papers have employed the profit maximization
or cost minimization as their objective in designing and analyzing inventory models
(see e.g., Whitin 1955; Smith 1958; Ladany and Sternlieb 1974; Hillier and Lieberman
1995). On the other hand, Schroeder and Krishnan (1976) propose an inventory model

under an alternative performance criterion of ROI maximization. Also, Rosenberg (1991)
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compares and contrasts profit maximization vs. return on inventory investment with
respect to logarithmic concave demand functions.

This paper is motivated by the lack of inventory models under ROI maximization
when there exists an option to invest in quality improvement. Since one of the most
frequently utilized economic performance criteria in inventory systems other than profit
maximization/cost minimization is that of ROI maximization, a comprehensive and
quantitative study of ROI maximization is highly desirable. In deciding the optimal
level of investment in quality improvement, it would be inherently suboptimal for ROI
maximizing decision makers to utilize any other models constructed for profit maximiza-
tion/cost minimization decision makers. The comprehensive and quantitative study is
also desirable because the existing literature qualitatively discusses the link between
ROI and the inventory reduction (see e.g., Oakleaf 1972).

The rest of this paper is organized as follows. We first formulate the ROl maximiza-
tion model for inventory and investment in quality improvement, and characterize the
unique global optimal solution. Next, under the assumption of fairly general class of
investment function, we show how the inventory level is reduced when it is optimal to
invest additional money in quality improvement. Then, for the specific case of a linear
investment function, the optimal closed-form solutions are obtained and several inter-
esting managerial insights are presented. Finally, summary and concluding remarks are

made.




18

2. Model Formulation and Optimality Conditions

2.1 Definitions and assumptions

First, various notations and their definitions used in this paper are as follows:
@: the order quantity size prior to inspection.
r: the fraction of an order quantity meeting the quality requirements.
C: the variable cost per unit including per unit material cost and per unit inspection
cost.
I: the inventory holding cost per unit time expressed as a fraction of the unit cost, which
excludes the opportunity cost of funds tied up in inventory.
K: the investment in equipment and training so as to increase the level of r.
P: the selling price per unit.
D: the sales quantity per unit time.
S': the setup cost.

Given these notations, we assume that there is a decision maker who procures an
order quantity of @ units of a product per cycle. This order quantity of Q units will
be inspected, and we assume Qr units of the order quantity will meet the quality re-
quirements (i.e., @ is the prior order quantity while @ is the posterior order quantity).
The remaining Q(1 —r) units that do not meet the quality requirements are assumed to
be discarded without any cost/value to the decision maker. The @ units meeting the
quality requirements will be sold to customers at P per unit.

[n this paper, the relationship between the fraction r and K is characterized by
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K(r) function, which is differentiable and increasing with respect to r. That is, we
are assuming that, by investing more in equipment and training, the fraction r can be
increased. Also, we are assuming that r is the decision variable (of course r(K) function,
where K is a decision variable, is also feasible). Furthermore, for our analysis, we assume
that, if ROI is non-positive for an ROI maximizing decision maker, the decision maker
ceases to operate. Therefore, we focus on the case of positive ROI.

Finally, the following simplifying assumptions are made throughout this paper, which
are often utilized in EOQ-type papers (e.g., Morse and Scheiner 1979).
(1) Shortage is not allowed. (2) The sales quantity per unit time and selling price per

unit are deterministic and constant over time.

2.2 Optimality conditions for Problem X

In this paper, we consider two types of the ROl maximization problems of Problem
X and Problem Y. Under Problem X, ROI is maximized over @ given the current level
of the investment in equipment and training, K'r, and the corresponding fraction of an
order quantity meeting the quality requirements, r7 (i.e., Kr = K(rr)). That is, the
investment in equipment and training and the fraction of an order quantity meeting
the quality requirements are assumed to be fixed. The total cost per unit time, TC,
consists of the setup cost, the variable cost, and the holding cost and the investment
in equipment and training. Given the posterior order quantity, Qr, the cycle length is

SD

expressed as %’3. Hence, mathematically, we have: TC = ore T %? + !Q‘;Ja + KF.

Since the total revenue per unit time is the selling price per unit multiplied by the
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sales quantity per unit time (i.e., PD), the profit per unit time, II, is obtained by
subtracting the total cost per unit time from the revenue per unit time. i.e., Il =
PD-TC.

Let us now formally define ROI. Traditionally, ROI is defined to be the ratio of the
profit per unit time over the average investment per unit time (see e.g., Schroeder and
Krishnan 1976). In our model, the average investment consists of the average inventory
investment and the average investment in equipment and training. Mathematically, the
average inventory investment is given by Q?—' (i.e., only the fraction of an order quantity.
meeting the quality requirements will be stored as inventory). On the other hand, the
average investment in equipment and training is given by K. Hence, ROl given by K¢

is as follows:

SD CD ICQrp
Qrr  1F 2
Since ROI is maximized over the order quantity, an equivalent model formulation (see

K (CZE + Kr) (1)

Rr = (PD -

Luenberger 1984) for Problem X is given by
Problem X: min — R (2)
Q>0
Then, the first order necessary condition (FONC) for Problem X is
SD ICr RCr _
Qxr 2 2

From the FONC (3), we obtain the following equation:

0 (3)

QrF =[CDSrp + (2CDRFSrrMpr + C*D*S*%)*%)/(CreMFE) (4)
where Mg = PDrp — CD — RKpre + [ Kprp. It can be verified that @7F is unique and
satisfies the second order sufficient condition (SOSC) at optimality. i.e.,

25D, CQr
Q31‘/T+{\)>O (5)
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Hence, Q% is the unique global optimal solution for Problem X and the corresponding

ROI, Ry, is the global optimal ROIL.

2.3 Optimality conditions for Problem Y

For Problem Y, the decision maker has an option to invest additional money in
quality improvement. Hence, under Problem Y, ROI is maximized over Q as well as r
for 0 < rpin < 17 < rpax < | where 75, represents the current level of r, rp, while rpqz
represents the technologically feasible maximum fraction of an order quantity meeting
the quality requirements. We will denote the corresponding investment in equipment
and training K (rmin) and K(rmaez) as Kuin and Apqz, respectively. An equivalent model
formulation (see Luenberger 1984) for Problem Y is given below.

SD CD ich

Problem Y:  min_ -R= Qr+ T3 +K - PD)/(—;

subject to rpn —r <0 and r — rpe: < 0.

Car +K) (6)

From the FONC when » = rp,;;, at optimality, we have

Qmin = [CDsrmin + (QCD[\’minSTmianm + CzDz 52 ?nm o 5]/(Crmianin) (7)

SD Cl min CcD - o min 1
Q 7 1‘2 : + ? B 7' +h min + R’mm( Q + K mm) = 0 (8)
where K Amin = % evaluated at r = Pmin and anu'u = PDrmin - CD - [\’minrmin +

I K pinTmin while Ry is ROI evaluated at Q = Quin and r = rpin.
In this case, it is easily verified that the SOSC is satisfied. Let us denote this
boundary local optimal solution by (@}, 7mix) and the corresponding ROI by R: ..

(= R(Qmm ’ mm))

Likewise, from the FONC when r = r,,,. at optimality, we have
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Qma: = [CDsrma:: + (2CD[\’mqu7'ma:Mmuz + 02 D2$2 yzna:)o 5]/(Crmaszax) (9)

[ maxr D Ve C mazr
SD +CQ _C + K+ R Q

2 mdt

K,

max

) <0 (10)

Qmaz r?mxz

4
where K .

= a ~ evaluated at © = gz and Mpaz = PDrpar — CD ~ KpazTmaz +
I KinazTmar While Roa, is ROI evaluated at @ = Quqz and 7 = 1,2, In this case, it is
also easily verified that the SOSC is satisfied. Let us denote this boundary local optimal
solution by (@}az1 'maez) and the corresponding ROI by R}, .. (= R(Qrazs Tmaz))-
Finally, let us consider the case when r = ri;; € (Fmin, "'maz) at optimality. We denote

the corresponding investment in equipment and training K(7in:) by Kine. Then, we have

ant = [CDST'{M + (?vCD[\:'n! SrintMinl + 020252 ;27;: o 5]/(CrintMint) (11)

Cth

SD ClQin C'D
4 LG _ .

. .2 .
merint 2 7int

ml + ng( [\,x,nt) =0 (12)

where K], = a}- evaluated at r = vy and My = PDriny — CD ~ RiuTine + [ KinuTine
while R, is ROI evaluated at Q@ = Qi and r = r4,,. Let us denote an interior local
optimal solution by (@7, 7#,) and the corresponding ROI by RZ,, (= R(Ql. 75))- At
optimality, we assume that the following second order sufficient condition is met for an

interior solution in our analysis:

4CSD* 2SDK" 2SDRK"
Q3r + 03 + Q3r

>0 (13)

s __ 32K
where K" = £,
In summary, for Problem X, there always exists a unique global optimal solution
because there is only one local optimal solution. On the other hand, for Problem Y,

further analysis is needed to determine the global optimal solution because there may
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be multiple interior and/or boundary local optimal solutions. This is the topic of the

next section.

3. Optimality Analysis
3.1 Derivation of global optimal solutions

Under Problem X, it can be easily verified that there exists a unique global optimal
solution. Under Problem Y, however, the argument for the unique global optimal so-
lution is no longer straightforward. In this subsection, we will first address (possible)
multiple global optimal solutions (In Subsection 3.3, we will address the determination
of the unique global optimal solution). Let us first characterize interior local solutions
when they exist.

From equations (11) and (12), the following relation can be obtained:

DKL, S
Q"‘“\/cw CKi 2, + CINL. (14)

int’ int

where C?D — CK},,r?,, + CIK! 1%, > 0 for an interior optimal solution. Substituting
equation (14) into the objective function (6), we see that the optimal ROI is expressed
as a function of r only, R(r). Since we have a function of a single variable, all interior
optimal solutions can be obtained by simple numerical methods such as Newton’s method
(see Luenberger 1984). Let us now suppose that there are n (n > 1) interior local optimal
solutions designated by (Q%,,r%,), i = 1,...,n. We denote the corresponding ROIs by

RE

met=1l...,n

By considering the two (possible) local boundary optimal solutions characterized by
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conditions (7), (8), (9), and (10), we have a total of n +2 possible local optimal (interior
and boundary) solutions. Hence, these local optimal solutions represent all possible
candidates for a global optimal solution, which may not be unique. The existence of a
global optimal solution can be shown via real analysis (see e.g., Apostol 1974 on page
83). Let us denote a global optimal solution by (Qg,rg) and the corresponding ROI
by Rg. Let us also denote a unique global optimal solution by (@, ri¢) and the
corresponding ROI by Rp;;. We will utilize the global optimal prior order quantity Qg

in the following analysis of inventory reduction.

3.2 Reduction in the prior order quantity

In this subsection, we will examine if the option to invest in quality improvement
leads to reduction in the prior order quantity. In order to show this, we will compare
the global optimal prior order quantity for Problem X, @Q%, with that for Problem Y,
Qz-

From the FONC of Problem X, we have

Qi = {(25D)/+EC (I + Bp)}°* (15)
where R is the global optimal ROI at Q% for Problem X. Similarly, from the FONC of
Problem Y, we have

Qe ={Q2SD)/rgC(I + R)}*® (16)
where R is the global optimal ROI at Q for Problem Y. Based on (15) and (16),
the relationship between the global optimal ROI and the reduction in the prior order

quantity is summarized in Proposition 1.
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Proposition 1. Reduction in Prior Order Quantity

1) If Rz, = R},;,, then the reduction in the prior order quantity is zero.

2) If R, = RE:,, then the reduction in the prior order quantity is Q% ~ Qir,.

3) If R = R;,,., then the reduction in the prior order quantity is given by Q% — @r,.--
PROOF:: Let us suppose that Ry = R;,;,. Then, Qg = Q.. = @F so that the level of
the prior order quantity remains the same. Let us now suppose that R; = Ri;, for any
given i. Then, we observe that C(/ + Rr) < C(/ + Rg) since R%;, > Rp, and rp < ri3,.
Therefore, Qi < QF. i.e., the prior order quantity is reduced. Likewise, let us suppose

that Rg = R;,,.. Then we observe that C(/ + Rr) < C(/ + Rg) since R}, > R¥, and

maz*

TF < Thaee Lherefore, Q... < QF. i.e., the prior order quantity is reduced. @

Hence, with the option to invest additional money in quality improvement, the prior
order quantity will be reduced or remain the same. In particular, if the decision maker
finds it optimal to invest additional money in quality improvement, the prior order

quantity will be always reduced. In the next subsection, we examine the uniqueness of

global optimal solutions.

3.3 Uniqueness of global optimal solution

Thus far, for Problem Y, it is possible to have multiple global optimal solutions. In
this subsection, we will employ an additional criterion to induce a unique global optimal
solution. The additional criterion is: if the levels of ROI are the same, then the global
optimal solution with the smallest prior order quantity will be preferred. The rationale

is that, given that the same levels of financial performance (i.e., ROI levels), the smallest
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prior order quantity is the most preferable due to factors that are external to this model
such as inspection resource requirements (e.g., less inspection equipment, facility, and/or
space are required for smaller prior order quantity).

In our model formulation for ROI maximization, given the multiple global optimal
solutions with Ry, we can show that the lowest prior order quantity is associated with the
largest investment in equipment and training as follows. Let us suppose that R, = R =
R% where R% and RL are ROIs corresponding to 3 and rk, respectively, satisfying
0 < Pmin S 75§ < 75 < Tmar < 1. Then. since re < ¥, K& < KL and R =

s = RZ, Q% > Q% from the previous subsection. We now summarize this hierarchical
determination of the unique global optimal solution as follows:

If there are more than one global optimal solutions under the ROI maximization as
the primary criterion, then the global optimal solution with the largest investment in
equipment and training will be the unique global optimal solution under the prior order

quantity minimization as the secondary criterion.

3.4 Reduction in inventory

In this subsection, we will further analyze if the option to invest in quality improve-
ment leads to reduction in the posterior order quantity. Reduction in the posterior order
quantity leads to reduction in inventory since the level of inventory is based on the level
of the posterior order quantity. Similar to Subsection 3.2, we will compare the unique

global optimal posterior order quantity for Problem X, Q%rF, with that for Problem Y,

QucTve-
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From the FONC for Problem X, we have
Qrrr={(2SD)/[C(I + RF)]}** (17)
Similarly, from the FONC for Problem Y, we have
Qiigmive = {(2SD)/ICU + Rirg)]}°* (18)
Let us first assume that there is single unique global optimal solution based on the
primary criterion only. Then, from (17) and (18), if (@ 70c) # (@min) Tmin), then
Ryc > Ry. Hence, Qo1¢ < @rrr and the inventory is reduced. On the other hand,
if (QUe:T06) = (@mins T'min)» then Ry = Rp. Hence, Qperig = Qprr and there is no
reduction in inventory.
Let us now assume that there are multiple global optimal solutions based on the
primary criterion, and one unique global optimal solution is determined based on the
secondary criterion of the prior order quantity minimization. Then, if (@}, Tmin) IS

not a global optimal solution, then Rj;; > Rf and the inventory is reduced. On the

other hand, if (@}, min) is @ global optimal solution, then Ry;; = Ry and there is no

min?
reduction in inventory because Q¢ = Qmin"min = QFTF-
Based on these observations, we present the following proposition.
Proposition 2. Reduction in Inventory
Case 1: When single unique global optimal solution is determined by the primary
criterion only:
A) IE(Que: i) F (Qrmins Tmin)» then the inventory is reduced by Qrrr — Qfgrie-

B) f (QUe Tie) = (@ruins Train)» then there is no reduction in inventory.

Case 2: When there are multiple global optimal solutions by the primary criterion and
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one unique global optimal solution is determined by the secondary criterion:

A) If (Qrins Thin) is not a global optimal solution by the primary criterion only, then
the inventory is reduced by Q%rr — Qu UG-

B) If (@nuins "min) is & global optimal solution by the primary criterion only, then

there is no reduction in inventory.
PROOF: Let us suppose that single unique global optimal solution is determined by
the primary criterion only. Then, if (Q{g:7Ug) # (Qimins 'min )+ the inventory is reduced
by Qirr — QuieTic because C(I + Ry) < C(I + Rirg). If Qi 7ir6) = (@ins Pin),
then C(/ + Rr) = C(I + R{;¢) so that there is no reduction in inventory.

Now, let us suppose that there are multiple global optimal solutions by the primary
criterion and one unique global optimal solution is determined by the secondary criterion.
If (Qrins Tmin) is Dot a global optimal solution by the primary criterion only, then C(I 4
Ry) < C(I + Ry) so that the inventory is reduced by Qprr — Qforfg- Likewise, if
(@mins Tmin) is @ global optimal solution by the primary criterion only, C(/ + R}) =

C(I + Ryg) so that there is no reduction in inventory. W

3.5 Further analysis of unique global optimal solution

In this subsection, we provide an alternative way to determine the unique global
optimal solution by utilizing characteristics of local optimality. This method provides
managerial insights and does not depend on the actual calculations of ROIs. From the

FONC for Problem Y, we have

R =(25D)/(CQ%*?) — I (19)
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Let us first assume that there are local optimal solutions at K" = K,;, and K = K,,,..
i.e., there are two local optimal solutions and both of them are boundary local optimal

solutions. We modify equation (19) in order to obtain the following equivalent conditions:

Rraz 2 Boin == (2SD)/(CQricrmaz) — 1 2 (2SD)/(CQuinriin) = 1
— Ar(mt’n,mat) S AQ(.min.muz) (20)

where AT( i nag) = ﬂ‘r‘;n—::mm and AQ( i maz) = -Q-;mgi?"‘"# Let us denote inequality
condition (20) by C1. We note that Arf, . ..., is the rate of change in the fraction of
an order quantity meeting the quality requirements due to the increase in investment in
equipment and training from A" = K, to K = K, . measured from the local optimal
investment level K7, .. Similarly, AQ{,nmar) 1S the rate of change in the prior order
quantity due to the increase in investment in equipment and training from K = K,;,
to K = K, . measured from the local optimal investment level K. . Hence, ROI at
K = K}, is greater than or equal to that at A" = K7, if and only if the rate of change
in the fraction of an order quantity meeting the quality requirements is less than or
equal to that in the prior order quantity.

Thus far, we have shown an alternative way to describe the relation between the
two boundary local optimal solutions. Let us now assume that, in addition to the

two boundary local optimal solutions, there is only one interior local optimal solution

(@Fnes Tine) With R},,. Then, we can derive the following equivalent relations:

R:na.t ->- R:nt — Ar(‘fnt.mar) S AQEint,maz:) (21)
Rt-nl 2 R:mn = Ar(.'min.int) S AQ(.min.int) (22)
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. . . » L ] .
- — Pmaz™T, - —_ Q "Qma: S 3 LY. Yimis
where Ariimaz) = 5% AQGngmen) = TG0, Allmininy 1 20d

AQZW-M-M) = gmg';—qu- Let us denote the inequality conditions (21) and (22) by C2

n

and C3, respectively.

If there are multiple interior local optimal solutions, inequalities similar to (20),
(21), and (22) can be employed to obtain the unique global optimal solution among the
interior local optimal solutions only. Let us denote such a solution by (Q7nr,7inT) With
Rinr.

Now, the unique global optimal solution can be determined as follows. If there
exist all three types of local optimal solutions, i.e., (Qnin:Tmin)s (@InT'TinT), 2nd
(Qrazs Tmaz)y first examine if C2 holds. (1) If C2 holds, then examine if C1 holds.
If C1 holds, the unique global optimal solution is (Q},.zs Tiaz) With Rye = Ry - Oth-
erwise, the unique global optimal solution is Rj;g = R},;,.. (2) If C2 does not hold, then
examine if C3 holds. If C3 holds, then the unique global optimal solution is (@7, "InT)
with Ryg = Rjyp. Otherwise, the unique global optimal solution is R = R}, ;-

If there exist two types or one type of local optimal solutions (e.g., (@n1:"Inr) and
(@mazr Tmaz))s @ similar approach can be used to determine the unique global optimal

solution. Therefore, we now have an alternative way to determine the unique global

optimal solution.
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4. Analysis under a Linear Investment Function

So far, we have assumed fairly general classes of investment functions. In this section,
we show additional managerial insights by employing a linear investment function.

Let us suppose that the investment function is K(r) = fr where B is a positive
constant. We note that an increase in g leads to the upward shift of the investment
function. Hence, for a given level of the fraction of an order quantity meeting the
quality requirements, the increase in g raises the investment in equipment and training.
Furthermore, when § is large, more investment has insignificant impact on the fraction
of an order quantity meeting the quality requirements. On the other hand, when 8
is small, more investment has significant impact on the fraction of an order quantity
meeting the quality requirements.

From conditions (7) and (8), the local optimal solution at » = rJ,,, is characterized
by

Qnin = [CDS + (26CDSM;,;, + C2D*S*)*%|/(CM;,;,) (23)

; (24)

-— .
Tmin = T'min

where ~ 30+ E%umin  CP 1 g1y (S 4.6) > 0 and My = PDr

5
min’ min min =

CD - Bri%, +BIr:2,.

Also, the local optimal solution at r = r},, is, from conditions (11) and (12),

o 28DS
Gadrad = \/ G0~ BOTB) + BCTra) %)
. _2BCDP +/28C*DS[-4BC(1 — )+ DP? +2CS(1 — I)] (26)

Tine = 3DPZ +28CS(1 1)
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We note that the interior local optimal solution given (25) and (26) is unique. In
addition, if the local optimal solution is an interior solution, then DP?+2C(S—28)(1 -
I} > 0. Furthermore, the second order sufficient condition given by (13) is always
satisfied by the solutions of (25) and (26).

Finally, by conditions (9) and (10), the local optimal solution at r = rJ, .. is given

by
Qraz = [CDS + (28CDSM;, . + C?D?5?)°?]/(C Mmas) (27)
Tmaz = T'maz (28)
where —bﬁ%+%‘—ﬁ%ﬁ+ﬂ+l?{m: C—Qp_;‘“'i-ﬁ) <O0and M;,,.=PDr} .. —

CD - Br:2 .+ BIr}: ..

We now will comprehensively analyze the optimal behavior of R, @, and K with
respect to parameter 3. First, it is easily verified that R is a decreasing function with
respect to . Next, let us define the critical value of 3, 8,. Mathematically,

fi=min {8} subjectto  Rig(f) = Ry (6) (29)

B defines the minimum £ value at which the unique global optimal Ry, is equal to

min- Likewise, we can define three additional critical values of 8, B2, B4, and As.
Mathematically, @ =max {8}  subjectto  Ryg(B) = R,..(8) (30)
Ba € {BIRE(B) = 0,8 > 0} (31)

B € {BlRyc(B) = 0,4 > 0} (32)

It can be verified that fi, 8,, B4, and Bp are either uniquely determined or non-existing.
Let us first examine the case where all four critical values exist. Then, it can be shown

that 8, < B, and B4 < Bp. It can also be shown that all possible relative positions of
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B1, B2, Ba, and Bp are characterized in the following six cases:

If 81 = B4, then B2 < By = B4 = s (Case (a); see Figure 1.a).

If By < Ba, then B2 < B; < B4 = Bp (Case (b); see Figure 1.b).

If B; > B4, then the following four cases may happen.

B2 < Ba < B < B1 (Case (c); see Figure 1.c), B4 < B2 < B < B (Case (d); see
Figure 1.d), B4 < B8 = B2 < f (Case (e); see Figure l.e), and 84 < 05 < B2 < B
(Case (f); see Figure 1.f).

First, from Figure l.a, Figure l.c, and Figure 1.d, if 8 < f3,, then the decision maker
will invest additional money in quality improvement where A" = A7, .. If 8, < 8 < 85,
then the decision maker will invest additional money in quality improvement where

K = K},,. That is, when 0, < § < g, K = K, will not be optimal. If g < 3, then

mnt”
the decision maker will cease to operate because the optimal ROI level is not positive.
Hence, for Cases (a), (c) and (d), it is never optimal not to invest any additional money
in quality improvement.

Also, from Figure L.b, if 3 < f,, then the decision maker will invest additional
money in quality improvement where A" = K, ... If 8, < 8 < (), then the decision
maker will invest additional money in quality improvement where A" = K7,,. That is,
when §; < B8 < Bi, K = K, will not be optimal. If 8; < 8 < 8, on the other hand,
then the decision maker will not invest any additional money in quality improvement.
Furthermore, if g < 3, then the decision maker will cease to operate.

Finally, from Figure 1.e and Figure 1.f, if # < 8g, then the decision maker will invest

additional money in quality improvement where K = K. If Bg < 3, on the other
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hand, then the decision maker will cease to operate. Hence, for Cases (e) and (f), it is
only optimal to invest at the maximum in quality improvement.

In addition, for Cases (c), (d), (e), and (f), for B4 < B < fp, ROI for Problem
X is non-positive while ROl for Problem Y is positive. Hence, by investing additional
money in quality improvement, the decision maker will operate with positive ROI (and
not cease to operate).

Moreover, as mentioned in Subsection 3.2, if the decision maker finds it optimal
to invest additional money in quality improvement, the prior order quantity is always
reduced. Hence, the unique global optimal prior order quantity for Problem Y, Qf ¢,
is always bounded above by the unique global optimal order quantity for Problem X,
Q@F. In addition, we observe that the fraction of an order quantity meeting the quality
requirements for Problem Y, 7, is bounded below by that for Problem X, rg.

Thus far, we have examined the case where all four critical values exist. We note that
similar analyses can be done where some critical values do not exist. The subsequent
analyses are simpler because of the absence of some critical values of 5. We now proceed
to illustrate some of the features in the following numerical example.

Example 1

Let us suppose that C = $100, D = 25 per month, / = 0.1 per month, P = $500,
S = §1000, rmin = 0.65 and rpq; = 0.95. Then, the four critical values of 8y, 8, Ba,
and Bp are 1072, 243, 12226, and 12226, respectively. The corresponding Q%, Q%rr,
Ry, Qe "Uer Quetie and Ry are summarized in Table 1.

First, we recognize that this example is Case (b) in Figure 1. Hence, as f increases,
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ROIs for Problems X and Y decrease. When 8, < 8 < Bp, we observe that ROIs are the
same while, when 8 < 8, ROI for Problem Y is strictly greater than ROI for Problem
X. Furthermore, when 8 < f3,, the decision maker will invest additional money in quality
improvement where R = R;, ..

Also, it can be shown that, as f increases, the prior and posterior order quantities
for Problem X and Y increase. However, it can be verified that, when 8, < 8 < g, the
order quantities are the same while, when # < ), the order quantity for Problem X is
strictly greater than that for Problem Y. That is, if # < 8, then inventory is reduced
when there is an option to invest additional investment in quality improvement.

In addition, it can be shown that, when 8 < f,, the fraction of an order quantity
meeting the quality requirements for Problem Y decreases as 8 increases. On the other
hand, it can also be shown that, when 8, < 3 < g, the investment level in equipment
and training for Problem Y remains the same as that for Problem X, i.e., no additional
investment to improve quality is the optimal policy. On the other hand, 8 < £, the
decision maker will invest additional money in quality improvement. Finally, when
Be < 3, the decision maker ceases to operate. That is, even if the decision maker invests

additional money in quality improvement, nonpositive ROI level results.

Table 1 Sensitivity analysis of change in 4.

Problem X Problem Y
B Qr | Qe | Br | Que | Tie | Quetic | Bue
243 |1 11.029 | 7.16885 { 9.630 | 7.2684 | 0.95 | 6.90498 | 10.38
1072 | 16.000 10.4 | 4.521 | 16.000 | 0.65 10.4 4.521
12226 | 108.75 | 70.6875 { 0.000 | 108.75 { 0.65 | 70.6375 | 0.000
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5. Concluding Remarks

In this paper, we constructed and analyzed inventory and investment in quality
improvement policies under ROl maximization. Specifically, first, we showed how an
ROI maximization problem is formulated. Next, the unique global optimal solution is
determined by employing the primary criterion of ROI maximization and the secondary
criterion of the prior order quantity minimization.

In addition, we showed how the levels for the prior and posterior order quantities
are reduced when it is optimal to invest additional money in quality improvement.
Furthermore, we provided an alternative way of determining the unique global optimal
solution based on the rates of change in the fraction of an order quantity meeting the
quality requirements and the prior order quantity.

Finally, under the assumption of a linear investment function, we first obtained the
unique global optimal solution in closed-form. Next, we derived various interesting
managerial insights with respect to the critical parameter of § where % represents the
rate of change in the fraction of an order quantity meeting the quality requirements
with respect to investment K. Specifically, it is easily verified that the optimal ROI is
a decreasing function with respect to 4. Hence, the decision to invest, not to invest, or
to cease to operate critically depends on the value of 8.

There are several extensions that will further enhance the importance and relevance of
our model. They include incorporation of more sophisticated features such as shortages,
delivery lags, and stochastic demand rates, etc. From the perspective of investing in

quality improvement, it would be of interest to study the allocation of the investment
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in quality improvement. For example, how much should be invested in purchasing or

leasing new equipment and how much should be invested in employees training and

wages.
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CHAPTER 2. INVENTORY AND INVESTMENT
IN SETUP OPERATIONS
UNDER RETURN ON INVESTMENT MAXIMIZATION

A paper prepared for submission to Computers and Operations Research

Toshitsugu Otake and K. Jo Min

Abstract

In this paper, we construct and analyze inventory and investment in setup operations
policies under return on investment (ROI) maximization. The key contributing features
of this paper are the establishment of an ROI model and characterization of the unique
global optimal solution when there exists an option to invest in setup operations. We also
show how the inventory level is reduced when it is optimal to invest additional money
in setup operations and derive the unique optimal solutions in closed-form when the
setup cost is a rational or linear function of the level of investment. Various interesting

managerial insights are provided.
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1. Introduction

In this paper, we construct and analyze inventory and investment in setup operations
policies under return on investment (ROI) maximization for decision makers of inventory
systems. ROI is a widely utilized economic performance measure dealing with finished
goods inventories (see e.g., Schroeder and Krishnan 1976; Morse and Scheiner 1979; and
Reece and Cool 1978). This paper is motivated by the lack of mathematical models
with ROI as an economic performance criterion when the option of investing in setup
operations exists.

The primary contributions of this paper are: (1) Formulation of the ROI model and
characterization of the unique optimal policies consisting of the order quantity and the
level of investment in setup operations, (2) Characterization of inventory reduction when
it is optimal to invest additional money in setup operations, and (3) Closed-form optimal
policies and managerial insights when the setup cost is a rational or linear function of
the level of investment.

Traditionally, numerous papers have employed the profit maximization (or cost mini-
mization) as their objective in designing and analyzing inventory models (see e.g., Whitin
1955; Smith 1958; Ladany and Sternlieb 1974; Hillier and Lieberman 1995). Meanwhile,
Schroeder and Krishnan (1976) proposes an inventory model under an alternative opti-
mization criterion of ROI maximization. Also, Rosenberg (1991) compares and contrasts
profit maximization vs. return on inventory investment with respect to logarithmic con-
cave demand functions.

Thus far, we have reviewed the inventory literature on performance criteria. Let us
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now proceed to review the setup investment models as follows. Recently, the superior-
ity of an inventory management system called Zero Inventory (often synonymous with
Kanban and Just-in-Time; see e.g., Zangwill 1987) has attracted a great deal of atten-
tion not only from industries but also from academia. The essential philosophy of Zero
Inventory management system is that inventory results from operational inefficiency.
Hence, the higher the level of inventory, the greater the operational inefficiency. From
this perspective, it is well known that several Japanese and American producers strive
to reduce the level of inventory as much as possible. In order to reduce the level of
inventory, meanwhile, numerous experts in industries and academia find it essential to
reduce the setup cost of production.

In Porteus (1985), such efforts to reduce the setup cost are mathematically incorpo-
rated by introducing an investment cost function of reducing the setup cost to undis-
counted EOQ models. For the cases of logarithmic investment cost functions and power
investment cost functions, his models demonstrate decreased operational costs when the
setup cost is reduced. Porteus (1986a) extends Porteus (1985) to the case of discounted
EOQ models. Billington (1987) formulates a model of which setup cost is a function
of capital expenses and investigates the relations among holding, setup, and capital
expenses. Hong, Xu, and Hayya (1993) proposes a dynamic lot-sizing model of which
setup reduction and process quality are functions of capital expenditure. Kim, Hayya,
and Hong (1992) investigates several classes of setup reduction functions by employing
the economic production quantity model.

We note that, in all these papers in setup investment models, the performance crite-
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rion has been the minimization of the cost or the maximization of the profit. Meanwhile,
hitherto, there has been no analytical formulation of ROI with an option to invest in
setup operations. Since one of the most frequently used criteria in inventory systems
other than cost minimization/profit maximization is that of ROl maximization, a com-
prehensive and quantitative study of ROI maximization is highly desirable. (In deciding
the optimal level of investment for setup operations, it would be inherently suboptimal
for ROI maximizing decision makers to utilize the existing models constructed for cost-
minimizing/profit-maximizing decision makers). The comprehensive and quantitative
study is also desirable because the existing literature qualitatively discusses the link
between ROI and the inventory reduction (see e.g., Oakleaf 1972).

The rest of this paper is organized as follows. We first formulate the ROI maxi-
mization model for inventory and investment in setup operations, and characterize the
unique global optimal solution. Next, under the assumption of fairly general classes of
setup cost functions, we show how the inventory level is reduced when it is optimal to
invest additional money in setup operations. Then, for the specific cases of rational and
linear setup cost functions, the optimal closed-form solutions are obtained and several
interesting managerial insights are presented. Finally, summary and concluding remarks

are made.
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2. Model Formulation and Optimality Conditions

2.1 Definitions and assumptions

First, for a decision maker with a single product under ROI maximization, various
notations and their definitions used in this paper are as follows:
@: the order quantity.
C': the variable cost per unit.
[: the inventory holding cost expressed as a fraction of the unit cost per unit time, which
excludes the opportunity cost of funds tied up in inventory.
K': the capital investment per unit time in setup operation.
S(K): the setup cost as a function of A’
P: the selling price per unit.
D: the sales quantity per unit time.

Next, the following simplifying assumptions are made throughout this paper (which
are often utilized in EOQ-type papers; e.g., Morse and Scheiner 1979).
(1) There are no learning effects in setup or production. (2) Shortage is not allowed. (3)
The sales quantity per unit time and selling price per unit are deterministic and constant
over time. In addition, as in Billington (1987), we assume that the setup cost S(K) is a
decreasing and differentiable function of A". Finally, we assume that, if the profit (hence
ROI) is non-positive, then the decision maker stops operating (i.e., the firm ceases to

operate). Therefore, we focus on the case of positive profit (hence ROI).
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2.2 Optimality conditions for Problem A

In this paper, we consider two types of the ROI maximization problems of Problem
A and Problem B. Under Problem A, ROI is maximized over @ given the current level of
the capital investment, K. i.e., the capital investment level is assumed to be fixed. The
total cost per unit time, TC, consists of costs of the setup cost, the variable cost, and
the holding cost and the capital investment per unit time in setup operations (see e.g.,
Billington 1987). Mathematically, the total cost per unit time is expressed as follows:
TC = -‘2‘2,2 +CD + %Q + Kr where Sp = S(KF).

Since the total revenue per unit time is the selling price per unit multiplied by the
sales quantity per unit time (i.e., PD), the profit per unit time, I, is obtained by
subtracting the total cost per unit time from the revenue per unit time. ie., Il =
PD—32 —CD -8 — Kp.

The inventory has been widely viewed as a capital investment for profits (see Schroeder
and Krishnan 1976; Morse and Scheiner 1979; Oakleaf 1972) and the capital investment
in setup operations is also viewed as an investment. Hence, the average investment per
unit time is given by CTQ + Kp.

Since ROI is defined as the ratio of the profit per unit time over the average invest-

ment per unit time, ROI given K as in Chen (1995) is obtained as follows:

Rp::(PD——Sg—D—CD-L%!—[\'p)/(g)g-{-[{p) (1)

Since ROI is maximized over the order quantity, an equivalent model formulation (see
Bazaraa et al. 1993; Luenberger 1984) for Problem A is given by

Problem A: min — Rp (2)

Q>0
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From the first order necessary condition (FONC), we obtain the following equation:

Q7 = [CDSr + (2CDKrpSrMp + C*D*S2)%%|/(CMF) (3)
where Mp = PD —CD — Kp + [KF. It can be verified that Q% is unique and satisfies
the second order sufficient condition (SOSC). Hence, Q% is the unique global optimal

solution for Problem A and the corresponding ROI, Rf, is the global optimal ROI.

2.3 Optimality conditions for Problem B

For Problem B, the decision maker has an option to invest additional money in setup
operations. Hence, under Problem B, ROI is maximized over Q as well as K for Kpin <
K < Kmez where Ky, represents the current level of K, A'r, while Rpq- represents
the technologically feasible maximum investment. We will denote the corresponding
setup costs S(Apmin) and S(Anaz) as Siuin and Syaz, respectively. An equivalent model

formulation (see Bazaraa et al. 1993; Luenberger 1984) for Problem B is given below.

ICQ

Problem B: min -R= (S( 1)D +CD+—+ K - PD)/(CQ + K) (4)

Q>0, K Q
subject to Ny — N < 0and A — Ky <0.

From the FONC when K = K, at optimality, we have

Qmm = [CDSmm + (QCD[\nunSmmMmm + ClD?S:un o 5]/(CM"'in) (5)
S’ . D C min . C min -
[( 5"‘» + 1)(_%—‘ + Kouin) + Hmm]/( Q + [\-"‘i”')z 20 (6)

where Muyin = PD = CD — Kopin + [ Koin and I, is the profit evaluated at Q = Qumin

and K = K. In this case, it is easily verified that the SOSC is satisfied. Let us

denote this boundary local optimal solution by (@7, Knin) and the corresponding ROI

by R min (-‘ R(len? mxn)

Likewise, from the FONC when A" = K,,.- at optimality, we have




47

Qmaz = [CDSmaz + (2CD Koz Smaz Mmaz + C?D?S? )]/ (C Mnaz) (7)

S”TIBID CQmax

Qmﬂl’
where Moz = PD—CD — Kyyor + I Koz and 11,42 is the profit evaluated at @ = Qyqz

CQmaz

(=5 + Kmaz) + Momaz)/( + Kpmaz)? <0 (8)

(5=

and K = Kpae. In this case, it is also easily verified that the SOSC is satisfied. Let

us denote this boundary local optimal solution by (@ .., Kmsc) and the corresponding

ROI by Rma: ( R(Qmazv K mna:))

Finally, from the FONC when K € (Kmin, Kmaz) at optimality and the corre-

sponding setup cost S(KGy;) = Sint, we have

Qiut = [CDS{ut + (QCD[\’iut SeneMine + C*D? qxznt * 5]/(CMf"‘) (9)
! C mn C i
[('SS“ Q t +[m¢)+nm¢]/(_Q_‘+["“) =0 (10)
int

where My = PD — CD — Ky + [Ny and Il is the profit evaluated at Q = Q;n:
and K = K. The corresponding SOSC is expressed below.

28t Sine > (Siue)® (11)
We will assume that, for tractable analysis, this SOSC is satisfied for an interior local
optimal solution. Let us denote an interior local optimal solution by (Q%,,, K7,,) and the
corresponding ROI by R}, (= R(Q},,, K,))-

In summary, for Problem A. there always exists a unique global optimal solution
because there is only one local optimal solution. On the other hand, for Problem B,
further analysis is needed to determine the global optimal solution because there may
be multiple interior and/or boundary local optimal solutions. This is the topic of the

next section.
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3. Optimality Analysis
3.1 Derivation of global optimal solutions

Under Problem A, it can be easily verified that there exists a unique global optimal
solution. Under Problem B, however, the argument for the unique global optimal so-
lution is no longer straightforward. In this subsection, we will first address (possible)
multiple global optimal solutions (In Subsection 3.3, we will address the determination
of the unique global optimal solution). Let us first characterize interior local solutions
when they exist.

From equations (9) and (10) as in Chen (1995), the following relation can be obtained:

Qint = (251'11! - S:‘n! [\’int)/(P - c) (12)
This is considered as a generalized expression of F% derived by Schroeder and Krishnan

(see Schroeder and Krishnan 1976), which does not consider an option to invest addi-
tional money in setup operations. Substituting equation (12) into the objective function
(4), we see that the optimal ROI is expressed as a function of A only, R(K). Since we
have a function of a single variable, all interior optimal solutions can be obtained by
numerical methods. Let us now suppose that there are n (n > 1) interior local optimal
solutions designated by (Q's,, K&,), ¢ = L,....n. We denote the corresponding ROIs by
R:,i=1,...,n.

By considering the two (possible) local boundary optimal solutions characterized by

conditions (5), (6), (7), and (8), we have a total of n 4+ 2 possible local optimal (interior
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and boundary) solutions. Hence, these local optimal solutions represent all possible
candidates for a global optimal solution, which may not be unique. The existence of a
global optimal solution can be shown via real analysis (see e.g., Apostol 1974 on page
83). Let us denote a global optimal solution by (Qg, Kg) and the corresponding ROI
by Rg. We will utilize the global optimal order quantity Qg in the following analysis of

inventory reduction.

3.2 Analysis of inventory reduction

In this subsection, we will examine if the option to invest in setup operations results
in inventory reduction. In order to show this, we will compare the global optimal order
quantity for Problem A, @QF, with that for Problem B, Q.

From the FONC of Problem A, we have

F = [(2SFD)/(IC + CRE)*® (13)
where Rf is the global optimal ROI at Q% for Problem A. Similarly, from the FONC of
Problem B, we have

Qs =[(25eD)/(IC + CRg))** (14)
where S¢, is the global optimal setup cost at K and RZ; is the global optimal ROI for
Problem B. Based on (13) and (14), the relationship between the global optimal ROI
and the inventory reduction is summarized in Proposition 1.
Proposition 1. (Inventory Reduction)
1) If R = R;,,., then the level of inventory is reduced, and the reduction in the

order quantity is given by Q@ — Q= .-




50

2) If R, = R, then the level of inventory is reduced. and the reduction in the order
quantity is Q — Qf,-

3) f R;; = R;,;,. then the level of inventory remains the same. and the reduction in
the order quantity is zero.
PROOF: Let us suppose that Ry = Ry ... Then. Qz = Q... = QF so that the
level of inventory remains the same. Let us now suppose that Ry = R, for any given
i. Then, we observe that 25;D < 2SgD since K', > RFr. Also we observe that
IC +CRg; 2 IC + CRE since R; > Rp. Therefore. Qf, < QF. i.e.. the level of
inventory is reduced. Likewise. let us suppose that Rg = R, ... Then. we observe that
255D < 25¢D since K. > NFr. Also we observe that /C + CRg > IC + CR} since
R > Ry. Therefore. Q;,,. < @F. i.e.. the level of inventory is reduced. B

Hence. with the option to invest additional money in setup operations. the level of
inventory will be reduced or remain the same. In particular. if the decision maker finds
it optimal to invest additional money in setup operations. the level of inventory will

be always reduced. In the next subsection. employing an additional criterion based on

Proposition 1, we will characterized the uniqueness of the global optimal solution.

3.3 Uniqueness of global optimal solution

Thus far for Probiem B. it is possible to have multiple global optimal solutions. In
this subsection. we will employ an additional criterion based on Proposition 1 to induce
a unique global optimal solution. The additional criterion is: if the levels of ROI are

the same, then the global optimal solution with the lowest level of order quantity will
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be preferred. The rationale is that, given that the levels of financial performance are
the same, the smallest inventory is the most preferable due to factors that are external
to this model (e.g.. storage facilities. space. risk of deterioration and obsoleteness, etc.).

In our model formulation for ROI maximization. given the multiple global optimal
solutions with Ry, we can show that the smallest order quantity is associated with
the largest capital investment as follows. Let us suppose that Ry = R = RL where
R% and RZ are ROIs corresponding to K§ and K. respectively. satisfving Kmin <
K% < KI < Komae- Then. since 255D > 255 D. where Si and SZ are the setup costs
corresponding K& and A, respectively. Also. /C +CR% = IC + CR% and Q% > Q%
by equation (14). Hence. the unique global optimal ROL. Rj;;.is R at A’ = I\'g rather
than Rg at K = KE. We now summarize this hierarchical determination of the unique
global optimal solution as follows:

If there are more than one global optimal solutions under the ROI maximization as
the primary criterion. then the global optimal solution with the largest capital investment
will be the unique global optimal solution under the order quantity minimization as the

secondary criterion.

3.4 Further analysis of unique global optimal solution

In this subsection. we provide an alternative way to determine the unique global
optimal solution by utilizing characteristics of local optimality. This method provides
managerial insights and does not depend on the actual calculations of ROIs. From the

FONC for Problem B, we have
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R=(25D)/(CQ* -1 (15)
Let us first assume that there are local optimal solutions at A" = K;,;, and K = K, ..
i.e., there are two local optimal solutions and both of them are boundary local optimal

solutions. We modify equation (15) in order to obtain the following equivalent conditions:

R:na.t Z R:m'n = (Qs;mrD)/(CQ;:at) -1 Z (?'Sr.ntnD)/(C ::in) -1

= AS(-min.nmz) S AQ(‘min,mar) (16)
G 3: "Sv.mx: - —_— Qr "'Qr.nn: C= —_— Sy Q= —
where A (minmaz) — _mlg‘:'":_—' AQ(min,mnz) - _msr‘.n_’ Smazr = 5?":? and Sg =

Smn Let us denote inequality condition (16) by C1. We note that S3; and 53 _

Qonin”
are the per unit setup cost at A" = K}, and A" = K., respectively. We also note
that AS'(‘m‘-n‘mu) and AQP i naz) are the rates of change in the per unit setup cost and

S .

the order quantity due to the increase in the capital investment from K = K, to
K = K., respectively. Hence, ROl at X' = K, is greater than or equal to that at

m

K = K, if and only if the rate of change in the per unit setup cost due to the increase
in investment is less than or equal to that in the order quantity.

Thus far, we have shown an alternative way to describe the relation between the
two boundary local optimal solutions. Let us now assume that, in addition to the

two boundary local optimal solutions, there is only one interior local optimal solution

(Qines Kiyp) with R, Then, we can derive the following equivalent relations:

R:na: Z R;nl A A5(.{rtt,rrux.z:) S Ainnt,nuz:n.-) (17)
R;nt 2 Rv.uin - AS‘(‘min.int) S AQEmin.inc) (18)
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Sie _ S' mar — Q. -Qv‘na: C= -— _mm_..mx.- -s—.
where ASjyme = T AQG pary = Tardhe ASp L = Fg=Sin, and

AQminying = -Q-mg':%m Let us denote the inequality conditions (17) and (18) by C2

and C3, respectively.

If there are multiple interior local optimal solutions, inequalities similar to (16), (17),
and (18) can be employed to obtain the unique global optimal solution among the interior
local optimal solutions only. Let us denote such a solution by (Qin7, KjnT) With Ry

Now, the unique global optimal solution can be determined as follows. If there
exist all three types of local optimal solutions, i.e., (@} ins Knin)s (@inT: KinT), and

K} .z), first examine if C2 holds. (1) If C2 holds, then examine if C1 holds. If C1

(@nazs Koz
holds, the unique global optimal solution is (@}, ..+ K;.z) With Rje: = R, Otherwise,
the unique global optimal solution is Ry = R},;,. (2) If C2 does not hold, then examine
if C3 holds. If C3 holds, then the unique global optimal solution is (Q}nr, Kjyr) with
Rjc = Riyp. Otherwise, the unique global optimal solution is Ry = RZ,,..

If there exist two types or one type of local optimal solutions (e.g., (Qinr, Kjnr) and
(Qmazs Kmaz)), a similar approach can be used to determine the unique global optimal

solution. Therefore, we now have an alternative way to determine the unique global

optimal solution, which will be utilized in the next section.

4. Analysis under a Special Setup Cost Function

So far, we have assumed fairly general classes of setup cost functions. In this section,
we show additional managerial insights by employing two special setup cost functions.

Namely, a rational setup cost function and a linear setup cost function.
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4.1 Analysis under a rational setup cost function

Let us suppose that, in this subsection, the setup cost function is a rational function,
S(K) = # where v is a positive constant and represents the magnitude of the setup cost
(see Ladany and Sternlieb 1974; Chen 1995). We note that an increase in v leads to the
upward shift of the setup cost function. Hence, for a given level of capital investment,

the increase in v raises the setup cost.

From conditions (5) and (6), the local optimal solution at A" = K,;, is characterized

by
i cD . YD
Qrin = = + (YC DM + L) (C M) (19)
1 'mm = [\’miu (20)

(_.J__r+1)(_mm+h ' m)'*'nmm

where Mcq.
(_...zn:xx.*.[i ;1.n)

>0 and M:

min

=PD-CD~-K,;, +IK;,;.
Also, the local optimal solution at K" = K7, is, from conditions (9) and (10),
Qruil) = (12yD(P — C))/(=9C(1 = 1) + V&) (21)
Kiu(v) = (-9C1(1 = ) + VE)/(4D(P - C)?) (22)
where £ = 81C2y%(1 — [)? + 24C D*y(P — C)3. We note that the interior local optimal
solution given (21) and (22) is unique.

Finally, by conditions (7) and (8), the local optimal solution at A" = K7, is given

by
Qhue = Fom + 1CDMe + LEE PO 29
K:,. = Konar (24)
where ‘Thachiar ('0—“’_‘_(:;2:_@::*;2 =2 <0 and Mz, = PD—CD - K, + [K-,..

Let us now derive the procedure for the unique global optimal solution. When
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there exist all three types of local optimal solutions, (@} iny Kniin)y (Qines Kie), and

(Qazs Koz ), then from Subsection 3.4,

= . _ (P C)Amt
AS(int,maz)-AQ(i“t'm“r) - (P +51 C)Kr:m.r

P+6x C .. K

int

(25)

o(COMaz L e \Reo
where §; = 42 ";‘"‘“M"‘“ > 0. Hence, the right hand side of equation (25) is

negative.

Likewise,

Gim - . (P —d— C)[ min P-C K; Lint
AS(m{n int) — A‘Q(mx"u,inl) - (P C)I m‘ { (P 6'2 _ C) K.

CQ' min

where §; = -—(—-—--—'Zi-m)i\u > 0 and the right hand side of equation (26) is negative.

(26)

The negative values of (25) and (26) imply that, given the three types of the local optimal
solutions, (Qr.zy Kez) is the unique global optimal solution.

From similar analyses over two types and one type of local optimal solutions, we
conclude that, if there exists the local optimal solution (Q},.z, K;.z)s then (Qhpry Koz
is the unique global optimal solution with R}, = R}, ... Otherwise, whenever there exists
the local optimal solution (@7, K7,), then (@7, A7) is the unique global optimal
solution with Ry = R;,,. If there does not exist (QF,,, K7,.), either, then (Q%;n, Kiir)
is the unique global optimal solution with Ry = R,

This implies that, with the rational setup cost function S(K) = %, there is always
only one global optimal solution under the ROI maximization criterion. i.e., there is no
need for the order quantity minimization criterion as the secondary criterion. We will
show that this is not the case in Subsection 4.2 with the linear setup cost function.

We note that, for any given set of values for parameters, the feasible set for Problem
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A is a subset of the feasible set for Problem B. Hence, the unique global optimal ROI for
Problem B, R{, is always bounded below by the unique global optimal ROI for Problem

A, Ry. In addition, it can be verified that % < 0 and a—';iy’-ﬁ < 0. We note that there

are three different expressions for Ry according to the three cases of Ko = K,
K}, and K, ,..
We now will comprehensively analyze the optimal behavior of R, @, and K with
respect to parameter 7. Let us first define the critical value of v, v,. Mathematically,
ni =max {7}  subjectto  Rig(7) = Run(7) (27)

11 defines the maximum 7 value at which the unique global optimal Ry, is equal to

~in- Likewise, we can define three additional critical values of %, v, 74, and 7s.
Mathematically, 72 = l}gg {v}  subjectto  Rpe(v) = Rnes(7) (28)
va € {7|Rp(v) = 0,7 > 0} (29)

18 € {7|Rye(r) = 0,7 > 0} (30)

It can be verified that v;, 72, 74, and g are either uniquely determined or non-existing.
Let us first examine the case where all four critical values exist. Then, it can be shown
that 71 < 92 and 74 < vg. It can also be shown that all possible relative positions of
Y1, Y2, VA, and g are characterized in the following six cases:

If 1 = 74, then v =4 =75 < 72 (Case (a); see Figure l.a).

If 1 > 74, then v4 =78 <11 <2 (Case (b); see Figure 1.b).

If 11 < 74, then the following four cases may happen.

N < ¥4 <78 < 72 (Case (c); see Figure l.c), 1 < y4 < 78 = 72 (Case (d); see

Figure 1.d), 11 <74 <72 < 78 (Case (e); see Figure 1.e), and 7; <2 <14 < 75 (Case
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(f); see Figure 1.f).

First, from Figure l.a and Figure 1.b, if ¥ < 44, then the decision maker will not
invest additional money in setup operations. If v > 74, then the decision maker will
cease to operate because the optimal ROI level is not positive. Hence, for Cases (a) and
(b), it is never optimal to invest any additional money.

Also, from Figure 1.c and Figure 1.d, if y < 41, then the decision maker will not invest
additional money in setup operations. If 1 < v < g, then the decision maker will invest
additional money in setup operations where K = K,,. That is, when v < v < 73,
K = K, .. will not be optimal. If ¥ > vp, on the other hand, then the decision maker
will cease to operate. Hence, for Cases (c) and (d), it is never optimal to invest at the
maximum level of ' = K qz.

Finally, from Figure l.e and Figure L.f, if ¥ < 4, then the decision maker will not
invest additional money in setup operations. If 9, < ¥ < 42, then the decision maker
will invest additional money in setup operations where X' = K7,,. If 9, < v < vg, then
the decision maker will invest the maximum where A" = K, ... If yg < v, on the other
hand, then the decision maker will cease to operate.

In addition, for Cases (c), (d), (e), and (f), for y4 < v < vg, ROI for Problem A is
non-positive while ROI for Problem B is positive. Hence, by investing additional money
in setup operations, the decision maker will operate with positive ROI (and not cease
to operate).

Moreover, as mentioned in Subsection 3.2, if the decision maker finds it optimal to

invest additional money in setup operations, the level of inventory is always reduced.
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Hence, the unique global optimal order quantity for Problem B, Qf;5, is always bounded
above by the unique global optimal order quantity for Problem A, Q%. Also, it can be
shown that %%‘1 > 0 and i%é’ﬁ > 0. In addition, we observe that the capital investment
for Problem B, K¢ is bounded below by that for Problem A, Kr. Also, it can be shown
that %}’-:Oand a—’;f}ﬁ > 0.

Thus far, we have examined the case where all four critical values exist. We note that
similar analyses can be done where some critical values do not exist. The subsequent
analyses are simpler because of the absence of some critical values of 4. We now proceed
to illustrate some of the features in the following numerical example.

Example 1

Let us suppose that C = $100, D = 25 per month, / = 0.1 per month, P =
$150, Knin = $50 per month, and A, = $480 per month. We note that these
numerical values are identical to these in Chen (1995). However, the numerical example
is substantially different here. Qur emphasis is on parametric analysis of v, which was
NOT addressed at all in Chen (1995). Then. the four critical values of v;, 72, 74, and vz
are 934, 5310395, 144010, and 578730, respectively. The corresponding Q%, Ry, Qg

K, and Ry are summarized in Table 1 as follows:

Table | Sensitivity analysis of change in 7.

Problem A Problem B
2 Qr | Rr [Que | Kic | Rig
934 1.12 | 733 | 1.12 | 50 7.33
144010 120 0 25.4 | 340 0.23
578730 | 459 | -0.07 | 83.5 | 416 0
5310395 | 2097 | -0.1 | 597 | 480 | -0.088
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First, we recognize that this example is Case (c). Hence, as v increases, ROIs for
Problems A and B decrease. When v < «,, we observe that ROIs are the same while,
when v > 1;, ROI for Problem B is strictly greater than ROI for Problem A.

Also, it can be shown that, as v increases, the order quantities for Problem A and
B increase. It can be verified that, when 4 < 7, the order quantities are the same
while, when 4 > 7, the order quantity for Problem A is strictly greater than that for
Problem B. That is, if ¥ > 7, then inventory is reduced when there is an option to
invest additional investment in setup operations.

Finally, it can be shown that, when 4 > v, the capital investment level for Problem
B increases as v increases. On the other hand, it can also be shown that, when v < 4,
the capital investment level for Problem B remains the same as that for Problem A. i.e.,
no additional investment to reduce the setup cost is the optimal policy.

From these observations, we summarize that when « is relatively small (hence the
setup cost is relatively small), then no additional investment is the optimal policy. How-
ever, when 7 is relatively large (hence the setup cost is relatively large), then additional

investment is the optimal policy, resulting in higher ROI and smaller inventory.

4.2 Analysis under a linear setup cost function

In this subsection, let us consider a linear setup cost function, S(K) = a — K,
where both « and g are positive constants. We note that « is the intercept and S is the
slope of this linear function. We further note that K € [Anin, Amaz] and Kpar < 5

This function is widely observed in the literature (see e.g., Billington 1987; Kim, Hayya,
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and Hong 1992; Chen 1995). It can be verified, by checking the second order necessary
and sufficient conditions, that the local optimality will be achieved at A" = R, and/or
at K = K.z. l.e., there is no interior local optimal solution. This result is consistent
with the findings of Billington (1987).

The actual expressions for the boundary local optimal solutions can be straightfor-
wardly obtained from conditions (5), (6), (7), and (8). Let us now derive the procedure
for the unique global optimal solution. As mentioned before, since the local optimality
is achieved at A" = K, and/or at A" = A',z, the unique global optimal solution will
be either at K = K, or at K = K .. Hence, when there exist two types of local
solutions, (@5 Kmin) a0d (@razs Kiaz), from Subsection 3.4,

AS(-ml"n.nrma:) - AQ;miu,mar)

(P - 6'2 - C)(?.C! - ﬁl\,:rm:)
(P46 - C)2a - 8K;,,)

(P + Jl - C)(QCY - ﬁ[{r-nm) ]2“ - 5[{1:10.:

1 — 31
{ [(P - 5‘2 - C)(?-CY - ﬁ[\’v-nu:) a - 6[{1;{11 ( )
o CQp * - 4 __m:.n.cq. Y . *
& = “'z(—?"“;’(mu”‘m“ > 0 and §, = 4= "'DA'“"‘)A""" > 0. Hence, the unique

global optimal solution depends on the sign of (31). If the sign of (31) is non-positive,

then Ryg = R;,,.. On the other hand, if the sign of (31) is positive. then R}; = R

min*

We note that if the sign of (31) is zero, then Ry = R;, .. The reason is, even though

mar*®

- =R.

min maz» the secondary criterion of the order quantity minimization favors K =

K, .. case. If there exists only one boundary local optimal solution, then it is the unique
global optimal solution.

We note that, as in Subsection 4.1, Ry, is always bounded below by Ry. In addition,
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it can be verified that %;3 < 0 and %:’fﬁ < 0 while %‘5 > 0 and a—};-},’-ﬁ > 0. In what

follows, we show how a comprehensive analysis of the optimal behavior of R, @, and K
with respect to parameters o and # is done. Qur approach here is similar to that in
Subsection 4.1. Let us examine the parameters a first, followed by 3.

First, we define three critical values of a, a, a4, and ag as follows:

a = >mi‘n {a}  subject to Rjg(a) = Rp(a) (32)
ap € {QIR;‘(Q) = O,C\' > ﬁ[\'nmz} (33)
ap € {a|Ryg(a) =0,a > K.} (34)

Likewise, we define three critical values of 3, 1, B4, and Bg as follows:

By = 0(}}1;3'%; {8}  subject to Rye(B8) = Rr(8) (35)
Ba € {BIRF8) =0,0 < f < =} (36)
B5 € {BIRyc(8) =0,0 < B < =) (37)

Let us first assume that all these critical values of a and 3 exist. Then, it can be
shown that all possible relative positions of a;, a4, and ag are as follows:

If a1 = ayu, then a; = a4 = ap (Case (a); see Figure 2.a).

If @y > a4, then ay < ag < a; (Case (b); see Figure 2.b).

If a1 < a4, then a; < a4 = ag (Case (c); see Figure 2.c).

Next, it can be shown that all possible relative positions of £y, B4, and Bg are as
follows:

If B1 = Ba, then B, = B4 = B (Case (d); see Figure 2.d).

If B1 > B4, then B4 = Bg < B, (Case (e); see Figure 2.e).
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If By < Ba, then B < Bg < (4 (Case (f); see Figure 2.f).

As we observe from Figure 2.a to Figure 2.f, analysis similar to the one in Subsection
4.1 can be done. e.g., for Cases (b) and (f), for a4 < a < ap and B < 8 < B4,
respectively, ROI for Problem A is non-positive while ROI for Problem B is positive.
Hence, by investing additional money in setup operations, the decision maker will operate
with positive ROI (and not cease to operate).

The key observations for the linear function case that are different from those for the
rational function case are as follows:

(1) For Cases (c) and (e), at a; and 0. respectively, even though R{;; = Rf, the
decision maker will choose Rj;; because of the secondary criterion of the order quantity
minimization. That is, @y < @F and Ajg = Kmar > Kp = Rpin even if Rj;g = Ry at
a; and [y (Recall: in the rational function case, the secondary criterion is never needed).

(2) For Cases (a), (b), (d), and (f), we observe that the decision maker will either
invest the maximum level of capital investment or cease to operate. In the rational
function case, from Figure 1.a to Figure 1.f, we observe that such case can never happen.
We note that, for the linear function case. investing additional money that is less than
the maximum is never optimal. Therefore. the magnitude of change in A" due to changes
in parameter values (a and 3) may be quite drastic relative to the rational function case
(the parameter value here is ).

Thus far, we have examined the case where all these critical values exist. We note
that similar analyses can be done where some critical values do not exist. The subsequent

analyses are simpler because of the absence of some critical values of @ and/or 8.
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5. Concluding Remarks

In this paper, we constructed and analyzed inventory policies and investment in
setup operations policies under ROl maximization. Specifically, we showed how an
ROI maximization problem is formulated and the unique global optimal solution is
determined. Furthermore, we showed how the inventory level is reduced when it is
optimal to invest additional money in setup operations. Also, we provided an alternative
way of determining the unique global optimal solution based on the rates of change in
the per unit setup cost and the order quantity. Finally, under the specific assumptions
of the rational and linear setup cost functions, we obtained the unique global optimal
solutions in closed-form and derived various interesting managerial insights with respect
to the critical parameters of a, g, and ~.

There are several extensions that will further enhance the importance and relevance of
our model. They include incorporation of more sophisticated features such as shortages,
delivery lags, and stochastic demand rates, etc. From the perspective of investing in
setup operations, it would be of interest to study the allocation of the investment in
setup operations. For example, how much should be invested in purchasing or leasing
new equipment and how much should be invested in employees training and wages.
Finally, it would be of interest to study the effects of investment in setup operations
with respect to process quality and capacity (see e.g., Porteus 1986b; Spence and Porteus

1987).



f

64
Acknowledgments

The authors would like to thank Dr. Cheng-Kang Chen for his work on the early

development of ROI performance measure.

References

Apostol, Tom M. (1974). Mathematical analysis, second edition, Reading, MA:
Addison-Wesley Publishing Company.

Bazaraa, Mokhtar S., Sherali, Hanif D.. and Shetty, C. M. (1993). Nonlinear
programming: theory and algorithms, second edition. New York, New York: John

Wiley & Sons.

Billington, Peter. J. (1987). The classical economic production quantity model with
setup cost as a function of capital expenditure. Decision Sciences, 18, 25-42.

Chen, Cheng-Kang (1995). Market-based allocation mechanisms for lot-size decision
makers and electric power utilities (Ph.D. dissertation). Ames, lowa: [owa State
University.

Hillier, Frederick S. and Lieberman. Gerald .J. (1995). /ntroduction to operations
research, sixth edition. New York. New York:McGraw-Hill Publishing Company.

Hong, Jae-Dong, Xu, S. H., and Hayva, J. C. (1993). Process quality improvement and
setup reduction in dynamic lot-sizing. International Journal of Production
Research, 33(11), 2693-2708.

Kim, Seung Lae, Hayya, Jack C.. and Hong, Jae-Dong. (1992). Setup reduction in the
economic production quantity model. Decision Sciences. 23, 500-508.

Ladany, S. and Sternlieb, A. (1974). The Interaction of economic ordering quantities
and marketing policies. AIIE Transactions. 6(1), 35-40.

Luenberger, David G. (1984). Linear and nonlinear programming, second edition.
Reading, MA: Addison-Wesley Publishing Company.

Morse, Wayne J and Scheiner, James H. (1979). Cost minimization. return on
investment, residual income: alternative criteria for inventory models. Accounting
and Business Research, %(3). 320-324.



65

Oakleaf, Robert B. (1972). Retail trade ROI. Management Accounting, 25-26.

Porteus, Evan L. (1985). Investing in reduced setups in the EOQ model. Management
Science, 31(8), 998-1010.

Porteus, Evan L. (1986a). Investing in new parameter values in the discounted EOQ
model. Naval Research Logistics Quarterly, 33, 39-48.

Porteus, Evan L. (1986b). Optimal lot sizing, process quality improvement and setup
cost reduction. Operations Research, 34, 137-144.

Reece, James S and Cool, William R. (1978). Measuring investment center
performance. Harvard Business Review, 56(3), 28-180.

Rosenberg, David. (1991). Optimal price-inventory decisions: profit vs. ROII. /[E
Transactions, 23(1), 17-22.

Schroeder, Roger G. and Krishnan, Ramakrishnan. (1976). Return on investment as a
criterion for inventory models. Decision Sciences, 7(4), 697-704.

Smith, W. M. (1958). An investigation of some quantitative relationships between
breakeven point analysis and economic lot size theory. AIIE Transactions, 9,

52-57.

Spence, A. M., and Porteus, Evan L. (1987). Setup reduction and increased effective
capacity. Management Science, 39(10), 1291-1301.

Whitin, T. M. (1955). Inventory control and price theory. Management Science, 2,
61-68.

Zangwill, Willard 1. (1987). From EOQ towards ZI. Management Science, 33(10),
1209-1223.




66

——— ROI for Problem A - = - = ROI for Problem B

R R R

YA =B
O ~oa 7
N =YA=178B T
aNM=7A=7<T b. va=7 <M <™ CN<1A<7B<T

B B

ﬁ\i - N~ - - 4;;\
N 'm\ 7 " uvx 7 T Y2 YA 7

dm<wu<rB=m eNnN<71A<7"<7B f <1 <v4<9B

Figure 1 The Optimal ROI vs. v




67

——— ROI for Problem A

R-

N\«
BK e @ A\

ai
b. ag < ag <o

R R

/16.4 Br = 7
=B

max

/31 o b
= 34
= (g

d. B =04=88 e. fa=PBp <B

- = -~ ROI for Problem B

R.

R-

N @

ﬁ [\'ma:x: 431

c. qp <ayq =ap

/

B
Z

Mﬁﬁ

f. By <P <Ba

Figure 2 The Optimal ROI vs. a and g



68

CHAPTER 3. INVENTORY AND CAPITAL
INVESTMENT ALLOCATION POLICIES
UNDER RETURN ON INVESTMENT MAXIMIZATION

A paper prepared for submission to Engineering Economist

Toshitsugu Otake and K. Jo Min

Abstract

In this paper, we construct and analyze inventory and capital investment allocation
policies under return on investment (ROI) maximization. Our model is constructed for
a decision maker of a single product with a budget constraint in capital investment.
Investment itself can be allocated for reduction of setup cost and/or improvement in
quality which is measured by the fraction of non-defective items in a production batch.

Interesting managerial insight and a numerical example are provided.

1. Introduction

In this paper, we construct and analyze inventory and capital investment allocation
policies under return on investment (ROI) maximization. Our model is constructed for

a decision maker of a single product with a budget constraint in capital investment.
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Investment itself can be allocated for reduction of setup cost and/or improvement in
quality which is measured by the fraction of non-defective items in a production batch.

The decision maker is assumed to determine the production batch size (i.e., the order
quantity). This order quantity is then inspected, and only the non-defective items will
be stored as inventory while the defective items will be discarded.

The key contributing features of this paper are the establishment of an ROI model
with the capital budget constraint. Even though ROI is a widely utilized performance
measure in finance and economics (see e.g., Schroeder and Krishnan 1976), the current
literature on inventory and investment policies mainly focuses on cost (see e.g., Hong
and Hayya 1995). Hence, it is highly desirable to examine such policies under ROI
maximization. This is especially true for finished products (see e.g., Morse and Scheiner
1979). For such products, we also derive managerial insights such as how the inventory
level is reduced when it is optimal to invest additional money in setup cost reduction
and/or quality improvement.

Let us now proceed to review the setup investment models as follows. In Porteus
(1985), such efforts to reduce setup cost are mathematically incorporated by introducing
an investment cost function of reducing setup cost to undiscounted EOQ models. Porteus
(1986) extends Porteus (1985) to the case of discounted EOQ models. By employing the
economic production quantity model, Kim, Hayya, and Hong (1992) investigates several
classes of setup reduction functions. Leschke and Weiss (1997) analyze investment pri-
orities for setup-reduction programs in a multi-product system. Also, Leschke (1997a)

describes the setup-reduction process and Leschke (1997b) provides some guidance of
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priority of investment for managers.

Next, the quality issues for a product in an inventory system have been extensively
studied. For example, Lee and Rosenblatt (1985) assume imperfect quality of product
and examine optimal inspection and ordering policies for products. On the other hand,
Cheng (1991) investigates an Economic Production Quantity (EPQ) model with process
capability and quality assurance considerations. Since numerous modern production sys-
tems emphasize reduction in inventory and improvement in quality, the relation between
the quality and inventory reduction is critical for both practitioners and academia. For
example, Voss (1987) argues that Just-In-Time production systems lead to increased
quality and reduced inventory. In addition, Kekre and Mukhopadhyay (1992) show a
negative relationship between inventory and quality by using econometric models.

Moreover, recently, joint investment in setup reduction and quality improvement
have been analyzed. Hong, Xu, and Hayya (1993) proposes a dynamic lot-sizing model
of which setup reduction and process quality are functions of capital expenditure. Fur-
thermore, Hong and Hayya (1995) examined the trade-offs between investment in setup
reduction and investment in quality improvement under cost minimization.

Thus far, we have discussed the literature on setup cost and quality improvement.
Let us now proceed with ROI and capital investment in the literature. ROI is one of
the most widely used economic and financial performance measure dealing with finished
goods inventories as mentioned before (see e.g., Schroeder and Krishnan 1976; Morse
and Scheiner 1979; Reece and Cool 1978). Traditionally, there are numerous papers

employing the profit maximization or cost minimization as their objective in designing
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and analyzing inventory models (see e.g., Whitin 1955; Smith 1958; Ladany and Sternlieb
1974; Hillier and Lieberman 1995). On the other hand, Schroeder and Krishnan (1976)
assume an ROI maximization inventory model. Also, by employing logarithmic concave
demand functions, Rosenberg (1991) compares and contrasts profit maximization vs.
return on inventory investment.

This paper is motivated by the lack of inventory models with the capital budget con-
straint under ROl maximization when there exists an option to invest in setup operations
and quality improvement. Since one of the most widely used economic and financial per-
formance criteria in inventory systems other than profit maximization/cost minimization
is ROI maximization, a comprehensive and quantitative study of ROI maximization is
highly desirable. The comprehensive and quantitative study is also desirable because
the existing literature qualitatively discusses the link between ROI and the inventory
reduction (see e.g., Oakleaf 1972).

The remainder of this paper is organized as follows. We first formulate the ROI max-
imization model for inventory and investment in setup and quality operations. Next,
under the assumption of fairly general class of investment function, we show how the
inventory level is reduced when it is optimal to invest additional money in setup opera-
tions and quality improvement. Moreover, for the specific case of a rational setup cost
function with a linear quality improvement function, we illustrate a numerical exam-
ple to show sensitivity analysis of unit variable cost. Finally, summary and concluding

remarks are made.
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2. Model Formulation

2.1 Definitions and assumptions

First of all, for a decision maker with a single product, various notations and defini-
tions used throughout this paper are as follows:
Q: the order quantity size prior to inspection.
C: the variable cost per unit.
I: the inventory holding cost expressed as a fraction of the unit cost per unit time, which
excludes the opportunity cost of funds tied up in inventory.
K,: the capital investment per unit time in setup operation.
S(K,): the setup cost as a function of K.
K,: the capital investment per unit time in quality improvement.
r(K;): quality level; the fraction of an order quantity meeting the quality requirements,
which is a function of A’,.
P: the selling price per unit.
D: the sales quantity per unit time.

Given these notations, we assume that a decision maker determine the order quantity,
Q. Also, given the quality level, r, @r units of the order quantity will meet the quality
requirements and they will be stored as inventory (i.e., @ is the prior order quantity
while @r is the posterior order quantity). The remaining defective units, Q(1 —r), are
assumed to be discarded without any cost/value to the decision maker. The Qr units

meeting the quality requirements will be sold to customers at P per unit.




73

In addition, the following assumptions, utilized in EOQ-type papers (see Morse and

Scheiner 1979), are considered in this paper:

(1) Shortage is not allowed.

(2) The sales quantity per unit time and selling price per unit are deterministic and
constant over time.

(3) the replenishment rate is infinite.

Furthermore, as in Billington (1987), we assume that the setup cost S(Kj,) is a
decreasing and differentiable function of A;. On the other hand, the fraction of an
order quantity meeting the quality requirements r(K,) is an increasing function and
differentiable function of K. Finally, we assume that, if the profit (hence ROI) is
non-positive, then the decision maker stops operating (i.e., the firm ceases to operate).
Therefore, we focus on the case of positive profit (hence ROI). In this paper, we consider
two types of problems under a return on investment maximization mode! as described

in next subsections.

2.2 ROI maximization model

We consider two types of the ROI maximization problem as Problem A and Problem
B. Under Problem A, ROI is maximized over Q given the current level of the investment
in setup and quality operations, K, and K., respectively. The inventory has been
widely viewed as a capital investment for profits (see Schroeder and Krishnan 1976;
Morse and Scheiner 1979; Oakleaf 1972) and the capital investments in setup operations

and quality improvement are also viewed as an investment. Hence, the average invest-
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ment per unit time is given by C—‘i"f- + K, + K,,. Since ROl is expressed as the ratio of
the profit per unit time over the average investment per unit time, RO, given K,, and

K,,, is obtained as follows:

S;D CD ICQr . - CQr - -
Ry=(PD == S0 - -y~ K K K) (0

where Sy = S(K,,) and r; = r(A;,).

Since ROI is maximized over the order quantity, an equivalent model formulation

(see Luenberger 1984) for Problem A is given by

Problem A: rnQin - Ry (2)
From the first order necessary condition (FONC; i.e., %L’, we obtain the following
equation:

Q7 =[CDSsr, + (2CD(K,, + K, )SyryMy + 02025}7'})0'5]/(01'//\4,) (3)
where My = PDr; — CD — (K, + K¢ )rp + (K, + K;,)ry. It can be verified that
@} is unique and satisfies the second order sufficient condition (SOSC). Hence, Q7 is
the unique global optimal solution for Problem A and the corresponding ROI, Rj, is the
global optimal ROI.

Now, under Problem B, we assume that the decision maker has an option to invest
additional money in setup cost reduction, quality improvement, or both. This implies
that the levels of investment in setup and quality operations are not fixed at the initial
levels for Problem A. Hence, ROI for Problem B is expressed as follows:

S(K,)D  CD ICQr(K;) CRr(K,)

—K, - K)/(ZR22 LK+ K (4)

R=(PD- or(K,) (K. 2 2

Let us denote the current level of investment in setup operation by K, _ and the

Smin

current level of investment in quality operation by K., . Let us also denote the tech-
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nological maximum investment in setup operation by A, .. and the technological max-
imum investment in quality operation by K,.,. (i.e., more investment is not effective
because the technological upper limit has already been reached). Hence, the decision
variables are K, € [N,y Nspma:) Where K, < K., and K, € [K,, , K;,..] where
K. < Krpas-

The current expenditure for both setup operation and quality operation is denoted

by Kmin = Ki,,,, + K;,n- On the other hand, we assume that the decision maker has a

capital investment budget of Npez (Kmin < Kmaz). Therefore, the budget constraint is

given by Kpin < K+ K, < Rqz. Hence, an equivalent model formulation for Problem

B is given below.

Problem B: mfl}\, -R (5)
subject to
Kepn =K <0 (6)
K = Koper <0 (7)
K. - K- <0 (8)
K- K., <0 (9)
KNe+ Ky — Koz <0 (10)

The corresponding Lagrangian function, £, is given by £ = —R + u(K,,,,, — K,) +
p2(Ks — Kspnop) + pa( A, — K7) + pa(Ky — Koy ) + ps( A + K — Rpaz). From this

Smax

function, the corresponding FONCs are:
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% =0 (11)
aa[i =0 (12)
;If':, =0 (13)
p1( Ko — Ks) =0 (14)
p2(Ks ~ Kopo) =0 (15)
pa(Krp,n = Kr) =0 (16)
pa( K — R .) = 0 (17)
ps(As + Ry = Rinaz) =0 (18)
20 (19)
p2 20 (20)
s >0 (21)
1 >0 (22)
s > 0 (23)
Ky — K, <0 (24)
K, - K,,. <0 (25)
K. —K <0 (26)
K, - K.,.. <0 (27)
Ks 4+ K — Ko <0 (28)

We note that the theoretical maximum number of cases. based on bounding/nonbounding



constraints, is 2° = 32. However, some cases are not feasible (e.g., K,

K, = K.

min)

can be optimal.

Now, from £5, %, and 2%, we have the following second derivatives:

]

O

9*L
dQoK,

9*L

IK, 0K,
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28D
Q@3r
C?R + K + K
$"D
Qr
COR fKi+ K,
2SDr'  SDr" . CQr(I + R)
g Qe T 3

R
O LK+ R,

~$'D
Q21.
O Ko+ K
SDr' . Co'(l+ R)
Q21.2 2
CgR + K, + K,

_S'D
Qr?
+ K, + K,

CQR

9

Smin?

and K, + K, = Kpaz), it can be verified that there are 13 cases that

(29)

(30)

(31)

(32)

(33)

(34)

From (29), (30), (31), (32), (33), and (34), the Hessian matrix of £, H, is given by

5
80 JQIK, IQIK:
L 3L 3L

(il J°C 3L

[_i 9? 2L

Ls d[\’, B]X,B]\,

(35)
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Throughout the rest of this paper, we will assume that the second order necessary
conditions are satisfied unless otherwise specified (i.e., all principal minors of H are
positive). In next section, we analyze how inventory is reduced when there is an option
to invest additional money in setup cost reduction and quality improvement based on

Kuhn-Tucker conditions and the second order sufficient conditions.

3. Analysis under General Functions

3.1 Reduction in prior order quantity

Under Problem A, there exists a unique global optimal solution. However, under
Problem B, when there may exist multiple local optimal solutions, we cannot argue
for uniqueness of global optimal solutions. Let us denote a global optimal solution for
Problem B by (Q¢;, K¢ ), and the corresponding ROI by RZ;. We will utilize the global
optimal order quantity Q¢ in the following inventory reduction analysis.

In this subsection, we will examine if the option to invest in setup operations and/or
quality improvement leads to reduction in the prior order quantity. In order to show
this, we will compare the global optimal prior order quantity for Problem A, @7, with
that for Problem B, Q. From the FONC for both Problem A and Problem B, we can
easily see the following Proposition 1:

Proposition 1. (Reduction in Prior Order Quantity)
1) If R is obtained when K = K, ., and K = K., then the reduction in the prior
order quantity is zero.

2) Otherwise, the reduction in the prior order quantity is Q7 —Qc-
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We note that the proof is similar to that in Proposition 1 of Chapter 1.
Hence, if the decision maker finds it optimal to invest additional money in setup cost
reduction and/or quality improvement, the prior order quantity will be always reduced

under the ROI maximization model.

3.2 Reduction in inventory

In this subsection, we will further analyze if the option to invest in setup operations
and quality improvement leads to reduction in the posterior order quantity. Reduction
in the posterior order quantity leads to reduction in inventory since the level of inventory
is based on the level of the posterior order quantity. Similar to Subsection 3.1, from the
FONC for both Problem A and Problem B, we can easily see the following Proposition
2:

Proposition 2. (Reduction in Inventory)

1) If Rg is obtained when K = K, and K7 > K., then the reduction in inventory
is zero.

2) If Ry is obtained when K] > Kj,,,, and K > K., then the reduction in the prior
order quantity is Q}r; — Qgrg.

We note that the proof is similar to that in Proposition 1 of Chapter 1.

We note that if we invest additional money in setup cost reduction at optimality,
the level of inventory will be reduced. However, even if we invest additional money in

quality improvement at optimality, the level of inventory may not be reduced.
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3.3 Uniqueness of global optimal solutions

In this subsection, we consider uniqueness of global optimal solutions. That is, for
Problem B, since it is possible to have multiple global optimal solutions, we will apply
for an additional criterion to induce a unique global optimal solution. The additional
criterion is: if the levels of ROI are the same, then the global optimal solution with
the smallest inventory, which is similar to the smallest posterior order quantity, will be
preferred because of factors that are external to this model (e.g., storage facilities, space,
risk of deterioration and obsoleteness, etc). Furthermore, if both the levels of ROI and
the smallest levels of posterior order quantity are the same, then the smallest prior order
quantity is the most preferable due to factors that are external to this model such as
inspection resource requirements (e.g., less inspection equipment, facility, and/or space
are required for smaller prior order quantity).

It is easily verified that, given selected multiple global optimal solutions with Rg,, we
can show that the lowest inventory is associated with the largest capital investment in
setup operation. In addition, the lowest prior order quantity is associated with the largest
capital investment in quality operation. Hence, if there are more than one global optimal
solutions under the ROI maximization as the primary criterion, then the global optimal
solution with the largest capital investment in setup operation will be the unique global
optimal solution under inventory minimization as the secondary criterion. Moreover,
if there are more than one global optimal solutions under the ROI maximization as
the primary criterion with the largest capital investment in setup operation, then the

global optimal solution with the largest capital investment in quality operation will be
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the unique global optimal solution under the prior order quantity minimization as the

tertiary criterion. In the next section, we provide an illustrative example.

4. Numerical Analysis

Thus far, we constructed ROI maximization problem, analyzed how inventory is
reduced when there is an option to invest additional money in setup cost reduction and
quality improvement, and examined how to determine the unique global optimal solution
if there are multiple optimal solutions. In this section, we employ a rational setup cost
function, S(K,) = 7\".'-', where v are positive constant, and a linear quality improvement
function, r(K.) = § K., where 4 is positive constant. These functions are widely used in
the literature (see e.g., Billington 1987; Kim, Hayya, and Hong 1992).

Now, let us suppose that C = $100, D = 25 per month, [ = 0.1 per month,
P = 8500, Knin = $200 per month, A%, = $500 per month, A, = $50 per month,

K,,.. = $400 per month, K, = $150 per month, A, = $500 per month, ¥ = 15000,

and § = 0.002. Since ¥ = 15000, S(A;) = % and d‘jf’ < 0 over K, € [50,400].
Similarly, since § = 0.002, r(K.) = 0.002K, and = > 0 over K, € [150,500].

This problem is solved by SAS/IML package (see SAS institute Inc. 1995). First,
when initial levels of investment in setup operations and quality improvement are K, ;=
K,

Smin

=50 and K., = K., = 150, then the optimal solution under ROI maximization
solved by SAS is @} = 17.36 and the corresponding unique global optimal ROI is 5.4312.
When there is an option to invest additional money in setup operations and/or quality

improvement, the optimal solutions obtained by SAS are @* = 3.83, K= = 109.66,
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Table 1 Sensitivity analysis for C.

Unit Variable Cost | Qp | K. | K7,.. | Rig
100 3.831 | 109.66 | 307.12 | 12.252
102 3.737 | 110.91 | 312.58 | 12.049
104 3.646 | 112.16 | 318.03 | 11.852
106 3.560 | 113.39 | 323.48 | 11.663
108 3.477 | 114.61 | 328.94 | 11.479

and K = 307.12, and the corresponding unique global optimal ROI is 12.2524. Since

[\I L]

swe T Krye = 416.78 < Ryper = 500, the capital budget constraint is also satisfied in

this case. We note that when we invest additional money in both setup cost reduction
and quality improvement, the order quantity is reduced and ROI increases.

[t is interesting to investigate some sensitivity analysis, especially unit variable cost,
which is summarized in Table 1. It is interesting to note that when variable unit cost
increases, the investments in both setup operations and quality improvement increase,

but the order quantity and the level of ROI decreases.

5. Concluding Remarks

In this paper, we constructed and analyzed inventory and capital investment allo-
cation policies under return on investment (ROI) maximization. Our model was con-
structed for a decision maker of a single product with a budget constraint in capital
investment. First, we showed how to formulate ROI maximization problems. Under
Problem A, a decision maker of an inventory system with a single product does not have
an option to invest additional money in setup cost reduction and/or quality improve-

ment. On the other hand, under Problem B, a decision maker has an option to invest
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additional money in setup cost reduction and/or quality improvement.

Moreover, we showed how the levels for the prior and posterior order quantities are
reduced when it is optimal to invest additional money in setup cost reduction and/or
quality improvement. In addition, the unique global optimal solution is determined
by employing the primary criterion of ROl maximization, the secondary criterion of
the posterior order quantity minimization (i.e., inventory reduction), and the tertiary
criterion of the prior order quantity minimization.

Furthermore, for the specific case of a rational setup cost function with a linear
quality improvement function, we illustrated a numerical example to show sensitivity
analysis of unit variable cost.

There are several extensions that will further enhance the importance and relevance
of our model. For example, in our model, we assumed a single product. If we consider
several products that have economic relations (i.e., substitutes and complements; see
Chapter 5 and Chapter 6), the formulation and analyses must be adjusted accordingly
(e.g., how to allocate capital investments for substitute product. Also, if we relax the
assumption of zero cost/value of defective items, it would be of interest to analyze various

scenarios such as rework and/or salvage value of the defective items.
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CHAPTER 4. INVENTORY AND INVESTMENT
IN SETUP OPERATIONS
UNDER PROFIT AND ROI MAXIMIZATION

A paper published in Proceedings of the Seventh
Industrial Engineering Research Conference !

Toshitsugu Otake and K. Jo Min

Abstract

We investigate inventory and investment in setup operations policies under a profit
maximization model and a return on investment (ROI) maximization model. We exam-
ine the optimality conditions for both models and study how inventory is reduced when
it is optimal to invest additional money in setup operations. Furthermore, we compare
and contrast the inventory reduction between the profit model and the ROI model. We
also examine the unique global optimal solutions in closed-form when the setup cost is
a rational or linear function of the level of investment. Finally, we illustrate various

interesting observations on our models via numerical examples.

'Reprinted with permission of Proceedings of the Seventh
Industrial Engineering Research Conference, 1998, track/sa0l /toshiota.pdf, pp. 1-8.
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1. Introduction

In this paper, we investigate inventory and investment in setup operations policies
under profit maximization and return on investment (ROI) maximization for a decision
maker with single product of inventory systems.

[n the literature of inventory control, numerous papers have employed the profit
maximization (or cost minimization) as their objective in designing and analyzing in-
ventory models (see e.g., Whitin 1955; Smith 1958; Ladany and Sternlieb 1974; Hillier
and Lieberman 1995). ROI is also a widely utilized economic and finance performance
measure dealing with finished goods inventories (see e.g., Schroeder and Krishnan 1976;
Morse and Scheiner 1979; Reece and Cool 1978).

Thus far, the inventory literature on performance criteria have been reviewed. Let us
now review investment in setup operations. Porteus (1985) pointed out that Japanese
devoted to decreasing setup cost in their manufacturing processes and he provided an
undiscounted EOQ model. Furthermore, Porteus (1986) extended Porteus (1985) to the
case of discounted EOQ model. Billington (1987) formulates a model of which setup
cost is a function of capital expenses and investigates the relations among holding, setup,
and capital expenses. Hong, Xu, and Hayya (1993) proposes a dynamic lot-sizing model
of which setup reduction and process quality are functions of capital expenditure. Kim,

Hayya, and Hong (1992) investigates several classes of setup reduction functions by
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employing the economic production quantity model.

The rest of this paper is organized as follows: we first formulate a profit maximiza-
tion model and an ROI maximization model. Then, we examine the characteristics of
solutions under profit maximization and ROI maximization. Moreover, by employing
rational and linear setup cost functions, we obtain the unique global optimal solutions
in closed-form. Also several interesting managerial insights are provided. Finally, con-

cluding remarks are presented.

2. Optimality Conditions

2.1 Definitions and assumptions

First of all, for a decision maker with a single product, various notations and defini-
tions used throughout this paper are as follows:
@: the order quantity.
C': the variable cost per unit.
I: the inventory holding cost expressed as a fraction of the unit cost per unit time, which
includes the opportunity cost of funds tied up in inventory.
i: the inventory holding cost expressed as a fraction of the unit cost per unit time, which
excludes the opportunity cost of funds tied up in inventory.
K: the capital investment per unit time in setup operation.
S(K): the setup cost as a function of A"
P: the selling price per unit.

D: the sales quantity per unit time.
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In addition, we utilize assumptions of EOQ-type papers such as no shortage and no

delivery lag (see Morse and Scheiner 1979).

2.2 Profit maximization model

For the profit maximization model, we consider two types of the profit maximization
problem as Problem A and Problem B. Under Problem A, profit is maximized over Q
given the current level of the investment in equipment and training, A'r. The total cost
per unit time, TC, consists of costs of the setup cost, the variable cost, and the holding
cost and the capital investment per unit time in setup operations (see e.g., Billington
1987). Hence, mathematically, TC = §‘5—D +CD+ [—023 + K where Sp = S(KF).

Since the total revenue per unit time is the selling price per unit multiplied by the
sales quantity per unit time (i.e.. PD), the profit per unit time, [I, is obtained by
subtracting the total cost per unit time from the revenue per unit time. Since profit
is maximized over the order quantity. an equivalent model formulation (see Luenberger

1984) as in Chen (1995) for Problem A is given by

SeD
Q

+C'D+£%Q+A’p (1)

Problem A: trgn —Ilg=-PD +

From the first order necessary condition (FONC). we obtain the following optimal solu-

tion for Problem A:

[25rD
Q&F'-’ 'TE— (2)
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Since the second order sufficient condition is satisfied at optimality, @y, is the unique
global solution for Problem A and the corresponding profit, [I%, is the global optimal
profit.

On the other hand, for Problem B, the decision maker has an option to invest ad-
ditional money in setup operations. Hence, under Problem B, II is maximized over Q
as well as K for Kpin < K < Koz where Ry, represents the current level of K, Kp,

w
while K ,,.- represents the technologically feasible maximum investment. We will denote

the corresponding setup costs S(Amin) and S(Kpnaz) as Smin and Spaz, respectively.

S(K
Problem B: xqm;\l —-I=~PD+ (Q)D +CD+— [CQ + K (3)

subject to Kpin — A <0 and K — A <0.

Under Problem B, there are three possible cases to be considered. Optimal solutions for
K* = Knin, K* = Kmaz, and K* = Kpy | € (Knin, Kmez), are Q. Qf., and Qf._,
respectively. Similarly, optimal objective function value for K* = Knpin, K~ = Kmaz,
and K* = Ky, are expressed as II; .. IT7 ., and II7,,. respectively. We will assume
that the Second Order Sufficient Conditions (SOSC) are satisfied. Especially, for an

interior local optimal solution, the corresponding SOSC is expressed by

250 ne 5'n.,., > (Snmt)2 (4)
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2.3 ROI maximization model

Similar to the previous subsection, we consider two types of the ROI maximization
problem as Problem C and Problem D. Under Problem C, ROl is maximized over @ given
the current level of the investment in equipment and training, Kr. The inventory has
been widely viewed as a capital investment for profits (see Schroeder and Krishnan 1976;
Morse and Scheiner 1979; Oakleaf 1972) and the capital investment in setup operations
is also viewed as an investment. Hence, the average investment per unit time is given by
%O&-f-[\’p. Since ROl is expressed as the ratio of the profit per unit time over the average
investment per unit time, RO given A’z as in Chen (1995) is obtained as follows:

SrD 1CQ (CQ
9

Since ROI is maximized over the order quantity, an equivalent model formulation (see

Luenberger 1984) for Problem C is given by
Problem C: mqin ~ Rr (6)
From the first order necessary condition (FONC), we obtain the following equation:
Qr. =[CDSF + (2CDKrSrMFr + C*D*S3)*%)/(C MF) (7

where Mp = PD —CD — Kr+iKF. It can be verified that Q% - is unique and satisfies

the second order sufficient condition (SOSC). Hence, Q3 - is the unique global optimal
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solution for Problem A and the corresponding ROI, R, is the global optimal ROL.
Now, under Problem D, ROl is maximized over Q) as well as K for Kpin < K < Kpgz.
An equivalent model formulation for Problem D is given below.

S(K)D iC
Problem D:  gip —R=(22 +CD+ 2+ K= P/

Q +K) (8)

subject to Ky — A <0and A — K0 <0.

Under Problem D, there are three possible cases to be considered. Optimal solutions
for K= = [{mina K = [\’mars and [\’}.iim € ([\’nu’vn [\'nmz)v are Q;?mm’ Q;?mm:? and ka(’
respectively. Similarly, optimal objective function value for K* = Kpin, K* = Konaz,
K* = Kp_, are expressed as Ry, R;.., and R}, respectively. We will assume that
SOSC is satisfied. Especially, for an interior local optimal solution, the corresponding

SOSC is expressed by

25;%&1& S;‘::nt > (S;‘:inc )2 (9)

We note that the detailed design and analysis of the ROI model are summarized in

Otake, Chen, and Min (1997).
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3. Analysis under a General Setup Cost Function

3.1 Inventory reduction analysis

In this subsection, we will examine if the option to invest in setup operations results in
inventory reduction. Let us now suppose that there are m (m > 1) interior local optimal
solutions designated by (Qff. , Kfj, ), = 1,...,m. We denote the corresponding profits
by IT{5,, 2 = 1,...,m. Let us denote a global optimal solution for Problem B and Problem
D by (@, Kn,) and (Qr,, AR, ), and the corresponding profit and ROI by II7; and

o respectively. In order to show this, first, we will compare the global optimal order
quantity for Problem A, @f, with that for Problem B, Qy;_. Based on the FONCs, we
can have the following Proposition 1:

Proposition 1. (Inventory Reduction for Profit Maximization Problem)

1) If ITIg; = II},,,, then the level of inventory is reduced, and the reduction in the

order quantity is given by @p, - @f, .-

2) If I = II%;,, then the level of inventory is reduced, and the reduction in the order
quantity is @f, — Qf{m.

3) If I1g = II},;,, then the level of inventory remains the same, and the reduction in
the order quantity is zero.
PROOF: Proof is similar to that in Proposition 1 of Chapter 2. B

Similarly, we note that detailed investigation for Proposition 2 for the case of ROI

model is summarized in Otake, Chen, and Min (1997).
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Proposition 2. (Inventory Reduction for ROI Maximization Problem)

1) If R = R}..., then the level of inventory is reduced, and the reduction in the
order quantity is given by Q. — Qk,...-

2) If R = RE;,, then the level of inventory is reduced, and the reduction in the order
quantity is Qg — @R,,,-

3) If Ry = R}, then the level of inventory remains the same, and the reduction in
the order quantity is zero.
PROOF: Proof is similar to that in Proposition | of Chapter 2. @

Hence, if the decision maker finds it optimal to invest additional money in setup oper-

ations, the level of inventory will be always reduced under both the profit maximization

model and the ROI maximization model.

3.2 Derivation of unique global optimal solutions

In this subsection, we will employ an additional criterion based on Proposition | and
Proposition 2 to induce a unique global optimal solution. The additional criterion is: if
the levels of ROl are the same, then the global optimal solution with the lowest level of
order quantity will be preferred. Given that the levels of financial performance are the
same, the smallest inventory is the most preferable due to factors that are external to
this model (e.g., storage facilities, space, risk of deterioration and obsoleteness, etc.).

In our model formulation for profit maximization, given the multiple global optimal
solutions with IIz, we can show that the smallest order quantity is associated with the

largest capital investment. Similarly, for ROI maximization, given the multiple global
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optimal solutions with Rg,, we can show that the smallest order quantity is associated
with the largest capital investment.

Hence, if there are more than one global optimal solutions under profit maximization
or ROI maximization as the primary criterion, then the global optimal solution with the
largest capital investment will be the unique global optimal solution under the order

quantity minimization as the secondary criterion.

3.3 Comparison of unique global inventory level

Now, in this subsection, we compare and contrast the unique global optimal solution
for profit maximization with that for ROI maximization. Comparison of unique global
inventory levels under profit maximization and ROI maximization is shown. We note
that the level of the unique global order quantity indicates the level of unique global
optimal inventory.

Suppose that the opportunity cost of funds tied up in inventory is less than or equal
to the optimal ROI level (i.e., / — i < R7).

1) if Kjj¢ = Knin under the profit maximization model, then Qrye < Qﬁua.
2) if Ky = Kf;, , under the profit maximization model, then we have the following two
cases.

a) and if K, < K = [\’f{m < Kiar under the ROI maximization model, then

Q;?uc < Qﬁva’
b) otherwise, the relation between Q% and Qf,, . is undetermined.

3) if Kfjg = Kmaz under the profit maximization model, then we have the following two
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cases.
a) and if Kjjg = Kmq, under the ROI maximization model, then Q% . < @, .-
b) otherwise, the relation between Q% and @, is undetermined.
Suppose that the opportunity cost of funds tied up in inventory is greater than the
optimal ROI level (i.e., / —¢ > R"). Then, the relation between Q% _ and @f, . is

undetermined.

4. Analysis under a Rational Setup Cost Function

In this section, we consider a rational function as a setup cost function, S(K) = &
where « is a positive constant, in order to show additional managerial insights. This
function is characterized as constant elasticity over any level of investment (see Chen
1995). Furthermore, it can be easily verified that, for the rational setup cost function
under profit maximization, both the boundary solutions and the interior solutions can
be optimal. Then, we have the following Proposition 3 as in Chen (1995):
Proposition 3. (Decision Making Rules for Rational Setup Cost Function

under Profit Maximization)

, . IC~D ICAD /
If Kmin < Kpy,,, = 3/ 75~ < Kiaz, then Kjy, = ¢/ =3= and Qf,,, = { WMD .

Otherwise,
Kmar—HR, v pe ——2 b
) if IC < -Q—.-mJ—Q::-"':-; then A \HU = [\miu and Qﬂuc = I\'m‘:nIC'
s = 24D
) if IC > Q__mss__mm_. then [ = I\ma: and Qnuc; = Km:xIC’

Omax

When some local optimal cases do not exist (e.g., K _ is never optimal), similar
[3:14

decision making rules are also provided. The subsequent analyses are simpler because
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of the absence of some local optimal solutions. For decision making rules for rational
setup cost function under RO! maximization, details are shown in Otake, Chen, and
Min (1997). We now proceed to illustrate a numerical example below.
Example 1

Let us suppose that C = $100, D = 25 per month, / = 0.2 per month, i = 0.1 per
month, P = $150, Kpin = 850 per month, AL, = $480 per month, and v = 15000.
We note that these numerical values are identical to these in Chen (1995). However,
the numerical example is different here. Our emphasis is on inventory reduction, which
was NOT addressed in Chen (1995). When initial investment level is fixed at A'r = 50,
the unique global optimal solutions under profit maximization and ROI maximization
are (Qf., Kng) = (27.39,50) and (Q,, Kr,) = (12.93,50) and the corresponding
unique global optimal profit and ROI are 652 and 0.80, respectively. On the other
hand, when there is an option to invest additional money in setup operations, we obtain
the unique global optimal solutions under profit maximization and ROI maximization as
(@t Kiiye) = (15.54,155.36) and (QR,,,, Kr,,) = (5.33,169.05), respectively. Also,
the corresponding unique global optimal profit and ROI are 784 and 1.47, respectively.
We note that when there is an option to invest additional money in setup operations,
profit is improved from 652 to 784 and level of inventory is reduced from 27.39 to 15.54.
Similarly, when there is an option to invest additional money in setup operations, ROI
is improved by 0.67 and the level of inventory is reduced by 7.60. Furthermore, since
the unique global optimal ROl is greater than the opportunity cost of funds tied up in

inventory and level of investment under ROl maximization is greater than that under
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profit maximization, we note that level of inventory under ROI maximization, 5.33, is

less than that under profit maximization, 15.54.

5. Analysis under a Linear Setup Cost Function

In this section, we consider a linear function as a setup cost function, S(K) = a— K
where a and 3 are positive constants. Contrary to the rational setup cost function, it
is interesting to note that there does not exist interior local optimal solutions under the
linear setup cost function. Then, we have the following Proposition 4 as in Chen (1995):
Proposition 4. (Decision Making Rules for Linear Setup Cost Function under

Profit Maximization)

Y =N, - e » - .mln D
NIEIC< a%‘-ﬂ%ggm-, then K, . = Kuin and Qg = \/g-("—i[lé—l-

2) If IC > grmes=Bau—, then Kfj,, = Kinaz and Qf,,, = |/ He=Efmedll,

When some local optimal cases do not exist (e.g., Apin is never optimal), similar
decision making rules are also provided. The subsequent analyses are simpler because
of the absence of some local optimal solutions. For decision making rules for linear
setup cost function under ROI maximization, details are shown in Otake, Chen, and
Min (1997). We again proceed to illustrate a numerical example below.

Example 2

Let us suppose that C = $100, D = 25 per month, / = 0.2 per month, 7 = 0.1
per month, P = $150, Ky = $50, Koor = $480, o = 500, and # = 1. We note that
these numerical values are identical to these in Chen (1995). However, the numerical

example is different here. Our emphasis is on inventory reduction, which was NOT




99

addressed in Chen (1995). When initial investment level is fixed at Kr = 50, the
unique global optimal solutions under profit maximization and ROI maximization are
(@f,» Kn,) = (33.37,50) and (Qr,., A'rr) = (19.5,50) and the corresponding profit and
ROI are 501 and 0.50, respectively. On the other hand, when there is an option to invest
additional money in setup operations, we obtain the unique global optimal solutions
under profit maximization and ROI maximization as (Qf,., K7,,) = (7.04,480) and
(Qryor Khyg) = (3.11,480), respectively. Also, the corresponding unique global optimal
profit and ROI are 603 and 0.934, respectively. We note that when there is an option
to invest additional money in setup operations, both profit and ROI are improved and
level of inventory under both cases is reduced. Furthermore, even if the level of the
investment under profit and ROI maximization is the same as the maximum investment
level, we note that level of inventory under ROI maximization is less than that under

profit maximization.

6. Concluding Remarks

In this paper, we investigated inventory policies and investment in setup operations
policies under profit maximization and ROI maximization. First, we studied how a
profit maximization problem and an ROI maximization problem are formulated. Sec-
ond, we examined the unique global optimal solution by the primary criterion of profit
maximization or ROl maximization and the secondary criterion of the order quantity
minimization.

In addition, we studied how the level of order quantities(i.e., the level of inventory)
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under profit and ROI maximization are reduced when it is optimal to invest additional
money in setup operations. Furthermore, by employing the secondary criterion, we
compared and contrasted the unique global optimal solutions under profit and ROI
maximization.

Finally, under the assumption of rational and linear setup cost functions, we first
obtained the unique global optimal solutions and provided the decision making rules to
determine the unique global optimal solution.

There are several extensions that will further enhance the importance and relevance of
our model. They include incorporation of more sophisticated features such as shortages,
delivery lags, and stochastic demand rates, etc. Also, it would be of interest to study the
allocation of the investment in setup operations and quality improvement incorporating

stochastic nature.
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CHAPTER 5. INVENTORY AND PRICING POLICIES
FOR A DUOPOLY OF SUBSTITUTE PRODUCTS

A paper published in Proceedings of the Fifth
Industrial Engineering Research Conference !

Toshitsugu Otake and K. Jo Min

Abstract

We design and analyze two duopoly models for two profit maximizing sellers. Each
seller is assumed to produce one product. and his competitor is assumed to produce a
substitute. Under the behavioral assumptions of a Cournot-type model and a Bertrand-
type model, we derive the equilibrium conditions for both models given linear demand
and inverse demand functions. Next. under the assumption of symmetric costs. we derive
the closed form inventory and pricing policies at equilibrium. Numerous interesting

economic implications are obtained via calculus and numerical analyses.

IReprinted with permission of Proceedings of the Fifth
Industrial Engineering Research Conference. 1996, pp. 293~298.
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1. Introduction

Recently, there have been numerous papers investigating inventory and pricing poli-
cies under competition (see, e.g., Min 1992; Chen and Min 1995). There are few papers,
however, that investigate the impacts of substitutes on the inventory and pricing poli-
cies. Given the prevalence of substitute products in real world inventory and pricing
policies, it is highly desirable to explore the impacts of substitutes.

As a first step toward the full exploration, in this paper, we design and analyze com-
petitive inventory models for two sellers. We assume that each seller produces a single
product that can be a substitute for the competing seller’s product. The quantitative
relations among the substitutes and their corresponding prices are expressed by the de-
mand functions of the two products. In characterizing the competitive behavior of each
seller, we employ a Cournot-type model and a Bertrand-type model (see. e.g., Varian
1992).

Under the Cournot-type competitive model. we assume that each seller maximizes
his profit per unit time over his order quantity and his demand (i.e.. sale) per unit time
assuming a given level of demand (i.e., sale) per unit time of his competitor. On the
other hand, under the Bertrand-type competitive behavior, we assume that each seller
maximizes his profit per unit time over his order quantity and his price per unit assuming

a given level of price per unit of his competitor. We note that for both the Cournot-type
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model and the Bertrand-type model, the determination of prices imply the determination
of demands and vice versa. Hence, the pricing policies necessarily determine the sale
(measured in demand per unit time) policies and vice versa. For both the Cournot-type
model and the Bertrand-type model, we will assume that demands are linear functions
of prices (and vice versa). This linearity assumption can be found in numerous papers

and books (see, e.g., Choi 1991) and facilitates the analyses of our models.

2. Two Types of Basic Models

2.1 Definitions and assumptions

For the Cournot-type model, we employ the linear inverse demand function as follows.

P = a-0gd,—-~d, (N

P, = a—vd - fd; (2)

where
P:: the per unit price of product i, i=1,2
d;: the per unit time demand of product i, i=1,2
a: the intercept of the inverse demand function
B: the own price effect

7: the cross price effect
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and parameters, a, 3, and +, are positive. The cross price effects are symmetric as is
required for well-behaved consumer demand function (Varian 1992). Also, # > v and
the difference 8 — v is directly related to the degree of product substitutability between

the two products (Choi 1991).

Similarly, for the Bertrand-type model, we employ the direct linear demand function

as follows.

d1 = (l—bPl'f-(SPQ (3)

d, = a+§P1—bP2 (4)

where
a: the intercept of the demand function
b: the own demand effect
d: the cross demand effect

where parameters, a, b, and §, are positive and the cross demand effects are symmet-
ric and b > ¢ and the difference b - § is inversely related to the degree of product
substitutability between the two products.

In order to mathematically formulate these models, the following variables and pa-

rameters are defined: Fori =1, 2,

Q:: the order quantity of product i for seller i

A;: the set up cost of product i
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C;: the variable cost per unit time of product i
H;: the inventory holding cost per unit per unit time of product i
T;: the cycle length for product i.

The basic assumptions for traditional EOQ model applied in this paper are as follows:
1) buyer’s demand rate is constant over time,
2) the replenishment rate is infinite,
3) no shortage is allowed,

4) there is no delivery lag.

2.2 Cournot-type model with linear demand

Under the definitions and assumptions shown above, we design and analyze the
Cournot-type model as follows. For Seller 1, per unit time profit maximization problem

is:

gllajfnx(thll(Zz) = (a—fd —~vd)d

Ardy
@

1
—Cldl—§H1Q1 (5)

where d, denotes a given level of demand per unit time for Seller 2.

Similarly, for Seller 2,
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maxﬂg(Qg,dgltil) = (Cl—’)'(?l-ﬂdg)dg

Qﬂ vd2

(6)

Aady 1
—Cady— —H
QZ 242 9 2Q2

where d; denotes a given level of demand per unit time for Seller 1

The corresponding first order necessary conditions (FONC) for (5) are:

o a—‘zﬂdl——ﬂg—%ll-—c‘=0 (7)

ady

81’11 — Aldl_lHl_:O (8)

aQ, Q@ 2

Meanwhile, the corresponding first order necessary conditions (FONC) for (6) are:

I, . A
- cr—:wd-;-‘ydl—-éz—Cg:O (9)

ad; 2

(10)

From the cubic equation formula in the Standard Mathematical Table (Beyer 1981),

we have the following trigonometric form for d; and @,.
2 a — (Z - C ) 0
d = ( A; [; ) cos*” Tl

(11)
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4.4‘((! s ‘7(22 - C‘)]%COS gl

278H, A,
4(0 - ‘}'(Ig — C‘)S

k

Ccos 0! = ‘—[

and 37 < 6, < 31 assuming non-negative profit (see, e.g., Chen and Min 1994).

The corresponding second order sufficient condition (SOSC) is given by 4Q;d,8 —

Ay > 0. Similarly, the decision variables for Seller 2 are also obtained as

where

- 2(0 - ‘)'d-l - Cg) C052 02

¢ 30 3 (13)
_ 4A,(a — ’7‘21 - C,) i ﬁ
Q2= A ]# cos 3 (14)
9 > Ao .
cosfy = —| 2762 A Ik

4la—-vd; — C,)3

and 37 < 6, < 3.

The corresponding second order sufficient condition (SOSC) is given by 4Q.d.8 —

A2>0.

At an equilibrium point, d; = d; and dp = d;. Hence, the equilibrium point can be

obtained by solving (11), (12), (13), (14) given d, = d, and d, = d, for di, d3, @7, and

@3- For the basic Cournot-type model, it has not been possible to obtain a closed form
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equilibrium point. Therefore, we employ numerical methods to solve for the equilibrium
point.
Example 1.

Let A; = $1000, H, = $4.0, C, = $20, A, = $750, H, = $3.0, C, = $15, a=100,
B#=1.0, and y=0.5. Then, the corresponding equilibrium point is given by (d;, @7)=(27.6,
117.4), (d3, @3)=(32.7, 127.8), and II{=525, and [15=875. Given the same price and

cross price effects, the profit difference can be explained by the cost difference.

2.3 Bertrand-type model with linear demand

As mentioned before, the Bertrand-type model involves the price levels instead of
the demand levels as the decision variables. Thus, for Seller 1, per unit time profit

maximization problem for the Bertrand-type model is derived as follows.

maxI'I,(Ql, PI,PI) = P[((l —bP'[ +(5P2)
QA

A[((l - bP1 +($P2)
oh

- C[((l —bPl +(YP2)

- %thl (15)

where P, denotes a given level of per unit price for product 2.

Similarly, for Seller 2,




110

ma.xl'Ig(Q,,P-zII_’l) = P-;(a-{-JP[ —-‘ng)
Q2,P; _
Az(a + 6P, — bP,)

Q2
- Cz(a + JP, -_ bPz)

1
- §h2Q2

where P; denotes a given level of per unit price for product 1.

(16)

Taking the partial derivative with respect to P, and @, of the objective function for

(15), we get FONC as

01'11 > bAl

_— = -2 —_— =
5P, a bP, +6P, + Ql +6C, =0
o, _ A 5y L.
_()Ql = Qf ((l bP[ +6P2) ?_Hl =0

Meanwhile, the corresponding FONC for (16) are:

o, L bAy L

-6—1% = a_~bR2+6P1+Q2 +bCz—0
6H2 A, = 1

TQ_Z = ag((l—bP2+JP[)"§'H2=O

(17)

(19)

Employing the cubic function formula, we have the following trigonometric forms for
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Seller 1.
P = (a4 8P)(3 —2cos? &) + 2bC; cos? &
P 3b
(a+6132—bCl)A1 1 01
=92 2 —
Q=2 3H, J2 cos 3
where
cosf = _[ 27b2-H1A1 ]_;_
' 4(a + 6P, - bC,)?

and i < 6, < 3.

The corresponding SOSC is given by 4Q:(a = bP, + §P;) — bA; > 0.

On the other hand, we obtain the trigonometric forms for Seller 2 as follows.

(a +dP)(3 — 2cos* 2) + 26C; cos? &

k= 30

((l+5131 —bCQ)Az ﬁ

Q=2 cos 5

where

270*H, A, ]
4((l -+ Jpl - ng):’

[

cosf = —

and ir < 6, < 3r.

The corresponding SOSC is given by 4Qz(a + 5P, — bP,) —bA, > 0.

(21)

(22)

(24)

At an equilibrium point, P, = P, and P, = P,. Hence, the equilibrium point can be
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obtained by solving (21), (22), (23), and (24) given P, = P, and P, = P, for P}, P;,
@;, and @;. For the basic Bertrand-type model, it has not been possible to obtain a
closed form equilibrium point. Therefore, we employ numerical methods to solve for the
equilibrium point.

Example 2.

Let A, = $1000, H, = %4.0, C, = $20, A, = $750, H, = $3.0, C, = $15,
a=100, b=1.0, and §=0.5. Then, the corresponding equilibrium point is given by (P,
Q1)=(83.1, 160), (P;, Q3)=(80.4, 175), and I1;=2927, and I13=3473. Given the same
own demand and cross demand effects, the profit difference can be explained by the cost

difference.

3. Basic Models under Symmetric Costs

3.1 Cournot-type model with linear demand under symmetric costs

In this section, we assume that the costs of Seller | and Seller 2 are symmetric, i.e.,
A, = A,, Cy =C3,and H; = H,. This can be a reasonable assumption for products that
differ in color, flavor, etc. With this assumption, we obtain a closed form equilibrium
point. And with this closed form equilibrium point, we provide economic implications
and managerial insights. Under the assumption of symmetric costs, it can be easily
verified that there exists an equilibrium point when d} = dj and Q} = Q3. Solving
equations (11), (12), (13), and (14) given d; = d;, d; = d3, di = d3, and Q7 = Q3, we

obtain the following equation.
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3 a—C 1 1 h 1
di —~ d2 —)2 =0 25
26+~ +2ﬂ+7(2) (25)

From the cubic equation formula, we have the following trigonometric forms for d,

Q, and T for Seller 1 and 2.

_ 4(a — C) 29_1_ 9
= ___23(2ﬁ+7) cos” = (26)

8A(@=C)y & (27)

O =lEea ) 3

3A(28 +v)
2H(a - C)

‘=

]%{cos %l—}“ (28)

where
2TAH(28 + ’Y)]
8(a—-C)?

(S

cos by = —[

1 3
and T < 0 < T

SOSC at equilibrium is given by 4Qd8 — A > 0.
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3.2 Bertrand-type model with linear demand under symmetric costs

Similarly, we assume that the costs of Seller 1 and Seller 2 are symmetric, i.e.,
A, = A, C, = C,, and H, = H,. Under the assumption of symmetric costs, it can
be easily verified that there exists an equilibrium point when P; = P; and Q} = Q3.
Solving equations (21), (22), (23), and (24) given P, = P, P, = P, P = P;, and

Q] = @3, we obtain the closed forms as follows:

2A .ab— (b— 6)Cb

2b — §)bA?
-3l %5 19 h(2b — §)

=0 (29)

Applying the cubic equation formula for Trigonometric form, for Seller 1 and 2, we get

0 = ‘)[ﬁ ab—(b-48)Cb
T Y3H -6

1z cos%z- (30)

Substituting the closed form for Q into the FONC, for Seller 1 and 2, we have
_ 3a(2b —8) —4[ab — (b — §)Cb] cos? &

rr= 36— 9)(25—3) .
L BAQR0=8) i Oy
T = GH -G —ocy 31 (32)
where
_ TBAH(b—8)X(2b—4)
wosbe = S @—p-ncp

and 47 < fp < 3m.

SOSC at equilibrium is given by 4Q{a — (b — §)P} —bA > 0.
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4. Economic Analysis under Symmetric Costs

4.1 Economic analysis for the cournot-type model

Let us examine the sensitivity of decision variables with respect to cost and demand
parameters. By differentiating the decision variables at equilibrium with respect to the
parameters, we have the following proposition.

Proposition 1: Suppose that the decision point, (d*, @), under the Cournot-type
model, satisfy FONC, SOSC, and equilibrium condition. Then,

0Q" . 0@ _. 99" _  0Q° _ . 9Q"

94 >0 <0 36 <0 e >0 55 <O

ad" ad* ad~ ad* ad*
ﬁ<0’ 3 <0, 5C <0, e >0, ﬁ<0.

From the cycle length (in closed form solution) under the Cournot-type model, we
have the following proposition.

Proposition 2: Suppose that the decision point, (d*, @*), under the Cournot-type
meodel, satisfy FONC, SOSC, and equilibrium condition. Then, for own demand and
cost parameters,

aT- ar- ar- ar- ar-:

W>O’ 35 <0, 8(.’>0 3a <0, 35 > 0.

We can also obtain the magnitudes of changes in d* and Q= with respect to changes
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in parameters at equilibrium. For example, it is verified that

o _Ma=0) 0
A~ 9(28+7) 3
1 P
— 0
X sm3[A(1~p2)_;_]<
o8 _ _4a=C) b
AH ~— 928 +7) 3
01 P
— - <0
“SHa -t
where
2TAH (28 + %)

p=| 3@ —0C) ]2

If the the set up cost is much greater than the inventory holding cost per unit per
unit time, i.e., H < A, then % < -g—“i— < 0 at equilibrium. Similarly, numerous analyses
can be made on the rest of magnitudes. In this paper, however, we focus on the signs of

changes only (due to the page limit; the complete list of signs and magnitudes of changes

is available from the authors upon request).

4.2 Economic analysis for the Bertrand-type model

As in the case of the Cournot-type model, by differentiating the decision variables
at equilibrium with respect to the parameters, we have the following proposition.
Proposition 3: Suppose that the decision point, (P*, @), under the Bertrand-type

model, satisfy FONC, SOSC, and equilibrium condition. Then,
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9Q"
ab

aQ

..6_9:>0’ 3H

oQ- Q-
34 <0

07 01
<0, 25 <0 5-> <

i
35

9P opr 9P
>0 5520 3¢ >% %

aP-

—_— < 0.
dA

> 0,

To obtain signs of > and £, we assume that 2(2b — §)dQ — Ab(b — §) > 0 and

ab '
2Ad + 2¢d@ + AOP — 4PdQ > 0.
From the cycle length (in closed form solution) under the Bertrand-type model, we
can summarize the following proposition.
Proposition 4: Suppose that the decision point, (P*, @), under the Bertrand-type

model, satisfy FONC, SOSC, and equilibrium condition. Then, for own demand and

cost parameters,
oT"
dA

ar-
dH

ar- >0 or*
ac da

<0,

>0, < 0,

We note that from Proposition I, 2, 3, and 4, numerous managerial insights can be

29" . 0. 29

obtained. For example, 55 > 0, 53

<0, and %% < 0 for both the Cournot-type model

and the Bertrand-type model. And a" <0, g‘;, < 0, and "C < 0 for the Cournot-type

ODP

, 55 >0, and 35 > 0. This is consistent with

model. This implies that aP

aP >0, %’; > 0, and aP > 0, for the Bertrand-type model shown in Proposition 3.
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Table | Sensitivity analysis [

AAH G |la [/l 1

Benchmark | 500 | 4.0 | 20 | 100 { 1.0 | 0.50
Aj/JA, > 1 | 750 [ 4.0 | 20 | 100 | 1.0 | 0.50
H,/H,>1|[500(45]|20/100|1.0{0.50
C,/C,>1 |500(4.0(30}100]|1.0{0.50
o1fay > 1 [ 500 4.0 20150/ 1.0{0.50
Bi/B2>1 |500|4.0f20 100} 1.5 0.50

5. Numerical Analysis under Symmetric Costs

In this section, we numerically analyze the Cournot-type model and the Bertrand-

type model via series of illustrated example.

5.1 Numerical analysis for the Cournot-type model

Example 3.

Let Ay = A; = $500, H, = H, = $4.0, C, = C;, = $20, a=100, #=1.0, and

7=0.5. Then, the corresponding equilibrium point is given by (d}, @7)=(29.7, 86.1),
(d3, @3)=(29.7, 86.1), and [I;=709, and [15=709.
From this benchmark, where 4% = I, %; =, % =1, 4=, g—; =1,and 2 =1, we
vary the parameter values of Seller I while we keep the parameter values of Seller 2 as
the same. Table 1 summarizes such changes. The resulting equilibrium points due to
these changes are summarized in Table 2.

From the above two tables, numerous observations can be made for managerial in-

sights. For example, if the set up cost for own product is increased from 500 to 750,

then the sales quantity per unit time will decrease while the order quantity per cycle
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Table 2 Sensitivity analysis II

di | dy | QF | Q3 | I | TG
Benchmark | 29.7 | 29.7 | 86.1 | 86.1 [ 709 | 709
AJA; >1 (28.9(29.9(104.2 | 86.4| 629 | 720
H/Hy>1|29.529.7 80.9 | 86.2| 687 | 711
C,/Ca>1]24.0]31.2| 77.4 | 88.3 | 420 | 795
afap > 1 | 57.3122.3(120.0 | 74.7 | 3047 | 349
Bi/B,>1 | 18.8]32.5]| 68.6 | 90.1 | 394 | 877

Table 3 Sensitivity analysis III

Al Hl Cl a) bl 51

Benchmark | 500 | 4.0 | 20 | 100 | 1.0 | 0.50
AjJA;>1 | 750 (4.0 20| 100 | 1.0](0.50
H\/H,>1[5004.5|20]100][1.0]|0.50
Cy/C,>1 |500|4.0| 30| 100 (1.0 0.50
ayfaz>1 | 500{4.0|20{150(1.0{0.50
0y/bp>1 | 500(4.0(20 100 1.5]0.50

will increase. Hence, the change of the cycle length is determined as being longer.

5.2 Numerical analysis for the Bertrand-type model

Next, the following example for the Bertrand-type model is illustrated.
Example 4.

Let A, = A, = $500, H, = H, = $4.0, C, = C, = $20, a=100, b=1.0, and §=0.5.
Then, the corresponding equilibrium point is given by (P, Q7)=(82.8, 121.1), (P;,
Q3)=(82.8, 121.1), and I17=3195, and [13=3195. From this benchmark, where ﬁ-; =1,

%;- =1, %’; =1,&=1, %: =1, and % = 1, we vary the parameter values of Seller 1 while
we keep the parameter values of Seller 2 as the same. Table 3 summarizes such changes.

The resulting equilibrium points due to these changes are summarized in Table 4.

We note that the signs of changes in decision variables in this section are consistent
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Table 4 Sensitivity analysis IV

LR @) Q | Iy | I
Benchmark | 82.8 | 82.8 ] 121.1 | 121.1 | 3195 | 3195
A/A2>1 | 83.3 | 82.9 | 147.7 | 121.2 | 3090 | 3209
H/H,>1| 829 | 828 114.0 | 121.1 | 3166 | 3199
Ci/C2>1 | 882 | 84.1 | 116.0 | 122.5 | 2670 | 3355
ayfa; >1 | 109.0 { 89.2 | 146.3 | 127.8 | 7034 | 4008
by/ba > 1 58.3 | 76.8 | 112.8 | 114.5 | 1499 | 2517

with the results from Proposition 1, 2, 3, and 4 of the previous section.

6. Concluding Remarks

We designed and analyzed two duopoly models for substitute products. For both the
Cournot-type model and the Bertrand-type model, we showed how the optimal inventory
and pricing policies were derived from the first order necessary conditions. We further
showed how the inventory and pricing policies were obtained at equilibrium. Next, under
the assumption of symmetric costs, we obtained the closed form inventory and pricing
policies at equilibrium. From the closed form policies at equilibrium, numerous economic
implications were obtained via calculus and numerical analyses. The basic models in
this paper can be extended by considering such features as three or more sellers, three

or more products, and nonlinear demand and/or inverse demand functions.
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CHAPTER 6. INVENTORY AND PRICING POLICIES
FOR A DUOPOLY OF COMPLEMENTS

A paper published in Proceedings of the Sixth
Industrial Engineering Research Conference !

Toshitsugu Otake and K. Jo Min

Abstract

We design and analyze two duopoly models for two competing sellers. Each seller
is assumed to be a profit maximizing EOQ-based decision maker facing linear demand
functions. We also assume that a single product is sold by each seller, and the two
products of the two sellers are complements. Under these assumptions, in the first
duopoly model, we develop a Cournot-type duopoly model where competition is over
the selling quantity. In the second duopoly model, we develop a Bertrand-type duopoly
model where competition is over the selling price. For both models, we derive and analyze
equilibrium inventory and pricing policies. Various interesting numerical examples are

illustrated.

'Reprinted with permission of Proceedings of the Sixth
Industrial Engineering Research Conference, 1997, pp. 783-788.
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1. Introduction

In the inventory literature, we find numerous papers examining the economic impli-
cations of pricing and inventory policies under competition. For example, Min (1992)
investigates both uniform and quantity discount pricing and inventory policies under
competition. Recently, Otake and Min (1995) extend Min (1992) by considering two
substitute products where an increase in one product’s price results in an increase in
another product’s demand. In this paper, we examine a parallel case of Otake and
Min (1995). Namely, an increase in one product’s price results in a decrease in another
products demand. i.e., the two products are complement (e.g., tennis rackets and tennis
balls). Even though there have been extensive studies of complements in the literature
of economic theory, to our knowledge, there have been few papers dealing with comple-
ments in the context of inventory policies (competitive or otherwise). Hence, given the
prevalence of complements in the real world, it is highly desirable to derive economic
implications and managerial insights in the context of inventory.

In this paper, based on Cournot-type and Bertrand-type competitive behavioral as-
sumptions (see e.g., Mas-Collel et al. 1995; Varian 1992), we design and analyze pricing
and inventory policies for two sellers. Each seller is assumed to produce a single product
and maximize his profit and the product of one seller is a complement to the product of

the other seller.
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Specifically, under the Cournot-type model, each seller chooses his demand (i.e., sale)
per unit time as a decision variable in order to maximize his profit per unit time given
his expectation on the level of demand (i.e., sale) per unit time of the other seller. On
the other hand, under the Bertrand-type model, each seller chooses his price per unit as
a decision variable in order to maximize his profit per unit time given his expectation
on the level of price per unit of the other seller. Because of dependency of demand
and price, the pricing policies determine the sale policies: conversely, the sale policies
determine the price policies. Dependency of demand and price are expressed by the
linear demand functions, which are widely found in the literature of economics (see Choi
1991; Vives 1985).

Under these assumptions, we first derive the equilibrium conditions for both Cournot-
type and Bertrand-type Models. Next, assuming the symmetric demand and cost func-
tions, we derive the closed form solutions and analyze inventory and pricing policies in
depth. Finally, we derive various interesting managerial insights and economic implica-
tions. For example, the Bertrand-type competition results in higher total sale per unit
time than the Cournot-type competition, which is consistent with the outcome shown

in the literature of economics.
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2. Two Types of Basic Models

2.1 Definitions and assumptions

For the Cournot-type model, the following linear inverse demand function is utilized.

p = a; — [idy + vd, (1)

P2 = 0z + vdy — fad, (2)

where

p;: the per unit price of product i,

d;: the per unit time demand of product i,

a;: the intercept of the inverse demand function

B;: the own price effect

v: the cross price effect V i=1 and 2,
and parameters, «;, §;, and -y are positive. The cross price effects are symmetric as is
required for well-behaved consumer demand function (see Varian 1992). Furthermore,

ﬁ::fz represents the degree of product differentiation and which is between 0 and 1.

Hence, ¥* must be less than or equal to the product of 8, and 3, (see Choi 1991).
Similarly, for the Bertrand-type model, the following direct linear demand function

is employed.
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dy =a; —bipy —dp (3)

dy = a; — dp; — bape (4)

where

a;: the intercept of the demand function

b;: the own demand effect

d: the cross demand effect V i=1 and 2,
and parameters, a;, b;, and d, are positive and the cross demand effects are symmetric.
Also, the sum of the product of the intercept for product i and the own price effect for
product j and the product of the intercept for the product j and the cross price effect
is greater than zero for ¢, 7 = 1,2 and 7 # j (see Vives 1985). The relations among the

parameters of the demand functions and inverse demand functions are as follows:

. bty
¥ R (5)
by = —t—
B:B; — ~+* (6)
_ Y
6 = BiB; — 2 ™

where i, j=1, 2 and 7 # j.

In order to mathematically formulate these models, the following variables and pa-




rameters are defined: Fori =1, 2,

Q:: the order quantity of product i for Seller i

A;: the set up cost of product i

¢;: the variable cost per unit of product i

h;: the inventory holding cost per unit per unit

time of product i

T:: the cycle length for product i.
Also, by the definition of complements (see e.g., Varian 1992), we assume Z—ﬁf < 0 and
§o <0 fori, j=1, 2

The basic assumptions for traditional EOQ model applied in this paper are as follows.
1) buyer’s demand rate is constant over time,
2) the replenishment rate is infinite,
3) no shortage is allowed,

4) there is no delivery lag.

2.2 Cournot-type model

Under the definitions and assumptions shown above, we design and analyze the
Cournot-type model with the linear demand function as follows. For Seller i, i=1 and 2,

the per unit time profit maximization problem is:
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max M(Qidild;) = (e — Bidi + vd;)d;

Ad; 1
-0 - cidi ~ 5hiQ: (8)

where d; denotes a given level of demand per unit time for Seller j and i, j=I, 2 and

i#7].

The corresponding first order necessary conditions (FONC) for (8) are:

61'[,- T t
— = R Yo R ;- —— (b =
3d a; — 20:d; + vd; -—c¢; =0 (9)

BI'I,- A,'d,' 1
o Ul (10

From the cubic equation formula in the Standard Mathematical Table (Beyer 1981),

we have the following solutions for d; and Q. i=1.2, given d;, j # i.

Aai +vdj —ci) 0

35 cos” 3 (11)
- AAdae+rdi—c)y 6
Qt - [ 36:"’-:‘ ] COSs —

(12)

3

where

and 37 < 6; < 37 assuming non-negative profit (see. e.g.. Chen and Min 1994).
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The corresponding second order sufficient condition (SOSC) is given by

4Q:d;B;: — A; > 0.

We note that (11) and (12) are the reaction functions illustrating the optimal choices

for Seller i given Seller j’s decision on d;.

2.3 Bertrand-type model

Likewise, for Seller i, i=1,2, the per unit time profit maximization problem is as

follows.

l'Qn"a:.(ni(Qi,P:’lﬁj) = pi(a; — bip; — 8p;)
Ai(a; — bipi — &p;)
Q:

— cfa; = bip; — 0p;)

1
~ FhiQ: (13)

where p; denotes a given level of per unit price for product j and i, j=1, 2 and 7 # j.
Taking the partial derivative with respect to p; and Q; of the objective function for

(13), we get FONC as
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J bi A;
36_1:_ = a'_2b'p‘_5ﬁ1+'Q_+b;C‘=0
aQ: ag(a.-—b,-p,- - 4p;) —511; =0

(14)

(15)

Employing the cubic function formula, we have the following trigonometric forms for

Seller 1.
I (a; — p;)(3 — 2 cos? %i) + 2b;c; cos? %l
‘ 3b;
_ oflai = dp; —bici)Aiyy 6
Qi = 2[ 3 ]2 cos 5
where
270%h; A; i
cos 0 = — 2762h; A; I3

4(a; — 6p; — bic:)®

and 37 < 6; < 3.

The corresponding SOSC is given by

4Q(a; — bip; — Jﬁj) —b;A; > 0.

(16)

(17)

We note that (16) and (17) are the reaction functions illustrating the optimal choices
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for Seller i given Seller j's decision on p;. We also note that given reaction functions of
(11) and (12) or (16) and (17), it is possible to obtain equilibrium points numerically.
For example, we can solve numerically (11) and (12), i=1,2, where d;, = d, and d; = d,
for di, d3, @7 and Q3 for a Cournot-type equilibrium solution. Likewise, we can solve
numerically (16) and (17), i=1,2, where py = p, and p, = f; for pi, p3, @ and Q3
for a Bertrand-type equilibrium solution. In the next subsection, we proceed to assume

symmetric demand and cost functions, and solve for an equilibrium solution in closed

form.

3. Basic Models under Symmetric Data

3.1 Cournot-type model under symmetric cost

and inverse demand functions

In this section, we assume that the inverse demand and the cost functions of Seller
1 and Seller 2 are symmetric, i.e., Ay = Ao = A, =ca=c, hy = hy = h, a1 =
az = a, and B = f; = . Under the assumption of symmetric cost and inverse demand
functions, it can be easily verified that there exists an equilibrium point where dj = d
and Q7 = Q3. Solving equations (11) and (12) given d; = d;, d, = dy, d} = d, and

@1 = Q3, we obtain the following equation.
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4(a —c) 2 0
X = —————cos*—
RSN
8A(ax

Q: = [311(2ﬂ 7]-
T = [3A("ﬂ 7)] {cos%}'l

4

2h(a —c)

where

AN ),
8(a—c)d

"l

cost = —[

and 37 <6 < 3m

SOSC at equilibrium is given by

4Q7d28 — A > 0.

3.2 Bertrand-type model under symmetric cost and demand function

Similarly, we assume that the cost and demand functions of Seller 1 and Seller 2 are

symmetric, i.e., Ay = Ay =A,ao=a=ch =hi=h,a =a; =a, by =b, =b, and

61 = 62 = §. Under the assumption of symmetric cost and demand functions, it can be

easily verified that there exists an equilibrium solutions where p} = p; and Q] = @;.

Solving equations (16) and (17) given p; = i, p2 = p2, p} = p3, and Q]

the closed forms as follows.

= (3, we obtain
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. _(8A ab—(b+d)ch 1 6,
O =g {55 Hrcosy

Substituting the closed form for Q into the FONC, for Seller 1 and 2, we have

_ 3a(2b+ &) — 4ab — (b + §)cb] cos? 2
Po = 3(b+06)(2b+9)
. 3A(b+8) 1 6y
T = G—grog )

where

2762 Ah(b + §)3(2b + 4)
S{ab— (6 + )P |

»)—-

cos by = —[

and 37 < 6, < 3m.

SOSC at equilibrium is given by

4Q;{a — (b+8)p;} — bA > 0.

(22)

(23)
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4. Economic Analysis

4.1 Economic analysis for the Cournot-type model

Let us examine the sensitivity of decision variables with respect to cost and inverse
demand parameters numerically and analytically. By differentiating the decision vari-
ables at equilibrium with respect to the parameters, we have the following proposition.

Proposition 1: Suppose that the decision point, (d*, @), under the Cournot-type

model, satisfies FONC, SOSC, and equilibrium condition. Then,

9Q; 9Q: 9Q; 9Q; 0Q:

'ﬁ'>0" 6/z<0' e <0, e >O’_'dﬁ7<0'
ad; ad: ad: od: ad:
ﬂ<0’ﬁ<0’ Je <0, aa>0, 6ﬂ<0'

From the cycle length (in closed form solution) under the Cournot-type model, we
have the following proposition.

Proposition 2: Suppose that the decision point, (d*, @), under the Cournot-type

model, satisfies FONC, SOSC, and equilibrium condition. Then, for own demand and

cost parameters,

’ Tc.
dA

aT"
a8

oT; <0, ()_T‘ >0 (?T° <

ah de da >0.

>0, 0,

We can also obtain the magnitudes of changes in d* and Q* with respect to changes in

various parameters at equilibrium. For example, it is verified that
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ode _ __4 cos? b
da ~ 3(28 —7) 3
4p 6, . 6
4+ —————-—cos—sin— >0 24
32-7)V1-p¢ 3 3 24
dd; _ 8la—c) c0520_1
B~ 328 -7)? 3
- Sla—clp cos g'—sin -01 <0 (25)

9028 -72V/1-p2 3 3

where

(24) represents the change of magnitude in df when the intercept of inverse demand
increases infinitesimally. Also, (25) represents the change magnitude in d} when the

own price effect of inverse demand increases infinitesimally.

4.2 Economic analysis for the Bertrand-type model

Likewise, we have the following propositions.
Proposition 3: Suppose that the decision point, (p°, @"), under the Bertrand-type

model, satisfies FONC, SOSC, and equilibrium condition. Then,
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Qs o 0% o 0% o 0%
A oh Jdc do
oP; oF; apP; opF;
4 >% 3, >0 520 5

993
ap
9F;
3b

>0, < 0.

<0, <0,

>0,

To obtain signs of 2£~ and Q(:,'—::, we assume that 2(2b + §)dQ — Ab(b + é) > 0 and
2Ad + 2cdQ + AbP — 4PdQ > 0.

From the cycle length (in closed form solution) under the Bertrand-type model, we
can summarize the following proposition.

Proposition 4: Suppose that the decision point, (p”, @), under the Bertrand-type
model, satisfies FONC, SOSC, and equilibrium condition. Then, for own demand and

cost parameters,

aTy; aT; a1y aTy; aTy;
3A > 0, ah <0, Je >0 S < 0, b > 0.

We note that from Proposition 1, 2, 3, and 4, numerous managerial insights can be

obtained. For example, a—ﬁT‘ > 0, -% < 0, and —l < 0 for both the Cournot-type model

and the Bertrand-type model. And a“' <0, %‘2 <0, a.nd ~ < 0 for the Cournot-type

OBP

| ap*
v 8h

model. This implies that %L > 0, and 5~ > 0. This is consistent with

apr 3

,fc > 0, for the Bertrand-type model shown in Proposition 3.

g >0, 32 > 0, and
Economic interpretations are straightforward. e.g., the increase in the setup cost leads

to the increase in the order quantity, the decrease in demand, and the increase in price.
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Table 1 Sensitivity analysis I

Al | alal B | 1

Benchmark | 500 | 4.0 | 20 | 100 | 1.0 { 0.50
AJA;>1 1505] 40 | 20 | 100 1.0 { 0.50
hy/hy>1 1500 }4.04) 20 | 100} 1.0 | 0.50
cfc;>1 | 500 4.0 | 20.2) 100 | 1.0 { 0.50
a;fa >1 | 500 4.0 | 20 | 101 | 1.0 | 0.50
Bi/B2>1 (500 | 4.0 | 20 { 100 | 1.01 | 0.50

5. Numerical Analysis under Symmetric Cost

and Demand/Inverse Demand Functions

In this section, we numerically analyze the Cournot-type model and the Bertrand-

type model via a series of illustrated examples.

5.1 Numerical analysis for the Cournot-type model

Example 1.

Let A, = Ay = $500, Ay = hy = $4.0, ¢ = ¢, = $20, a=100, 8=1.0, and ¥=0.5.
Then, the corresponding equilibrium point is given by (di, Q})=(50.4, 112.2), (d3,
Q3)=(50.4, 112.2), and [17=2312, and [13=2312.

From this benchmark, where :—:-; =1, ;'i: =1, % =1, %;L = 1, %: =1, and ';;-2‘- =1, we
vary the parameter values of Seller 1 by 1 percent of the given values while we keep the
parameter values of Seller 2 as the same. Table | summarizes such changes.

The percentage change of the resulting equilibrium points due to above changes from

the Benchmark value are summarized in Table 2.

From the above two tables, numerous observations can be made for managerial in-
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Table 2 Sensitivity analysis 1

di | d | Q | @ | I | I
Benchmark | 50.4 | 50.4 | 112.2 ) 112.2 | 2312 | 2312
Ai/A; >1 |-0.02)-0.01) 0.49 |-0.003 | -0.1 |-0.01
hi/hy > 1 {-0.02}-0.01 | -0.51 | -0.003 | -0.4 | -0.01
afee>1 |-0.221-0.06 | -0.11 | -0.03 | -0.13 | -0.01
ayfa;>1 | 1.09 | 0.28 | 0.54 | 0.14 | 2.3 0.6
Bi/B2>1 | -1.1 | -0.28 | -0.54 | -0.13 | -1.23 | -0.59

sights. For example, if the set up cost for our own product is increased from 500 to 505,
then the sales quantity per unit time will decrease while the order quantity per cycle

will increase.

5.2 Numerical analysis for the Bertrand-type model

Next, the following example for the Bertrand-type model is illustrated.
Example 2.

Let Ay = A2 = $500, by = hy = $4.0, ¢; = ¢, = $20, and « = 100, § = 1, and
v = 0.5, that is, a=200, b=%, and § = 2 by (5) through (7). Then, the correspond-
ing equilibrium point is given by (pi, Q3)=(69.6, 123.2), (p;, Q3)=(69.6, 123.2), and

[17=2522, and [1;=2522. From this benchmark, where 4% = 1, L=12=1,
2 2 €2

S

=1,
% =1, and % = 1, we vary the parameter values of Seller 1 while we keep the param-
eter values of Seller 2 as the same. Table 3 summarizes such changes. The resulting
equilibrium points due to above changes are summarized in Table 4 .

We note that the signs of changes in decision variables in this section are consistent
with the results from Proposition 1, 2. 3. and 4 of the previous section. From these

examples, with the equivalent parameter values. we find that the total profit for the
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Table 3 Sensitivity analysis III

Al hl Ct a bl 51
Benchmark | 500 | 4.0 | 20 200 1.333 | 0.666
Ai/A;>1 (505 40 | 20 | 200 | 1.333 | 0.666
hy/ha > 1 [500|4.04| 20 | 200 | 1.333 | 0.666
afca>1 | 500 4.0 [20.2] 200 | 1.333 | 0.666
arfa; > 1 |500| 40 | 20 |201.333 | 1.333 | 0.666
Bi/By>1 | 500 | 4.0 | 20 | 197.368 | 1.3158 | 0.658

Table 4 Sensitivity analysis [V

pi P2 Q1 Q | I | I3

Benchmark | 69.6 | 69.6 | 123.2 | 123.2 | 2522 | 2522
A/A;>1 (0.02]-0.004 | 0.49 |-0.003 | -0.1 {-0.01
hi/hy >1 |0.02|-0.004 | -0.51 | -0.003 | -G.4 | -0.01
ci/c2>1 [0.16| -0.04 | -0.11 | -0.03 | -0.1 | -0.13
ajfap>1 (066 0.19 | 0.52 | 0.15 | -0.2 | -0.55
Bi/B2>1 {0.05( -0.11 | -0.65 { -0.26 | 0.1 |-0.04

Bertrand is higher than that for the Cournot. Hence, in a real-life setting, each firm
has an incentive to induce price-competition rather than quantity-competition. Further-
more, when we observe the demand level under the Bertrand-type model and under the

Cournot-type model, we can obtain the following relations.

dzs < dg, (26)
dee < de (27)
Ps < Pes (28)

Phe < Pz (29)
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where the first letter ¢ or b of the subscript stands for the Cournot-type Model or
the Bertrand-type Model, respectively. Likewise, the second letter s or ¢ represents
substitutes or complements, respectively. In the theory of economics, this implies that
the Cournot-type model is more monopolistic competition than the Bertrand-type model

(see Vives 1985).

6. Comparison and Contrast of Substitutes with Complements

We are currently in the process of comparing and contrasting the outcomes from
substitute products (see Otake and Min 1995) and from complements. In particular,
under symmetric cost and demand/inverse demand functions, we define the following:

Sect a critical quantity of complements under Cournot-type model,

See: a critical quantity of complements under Bertrand-type model,

Ses: a critical quantity of substitutes under Cournot-type model,

Sps: a critical quantity of substitutes under Bertrand-type model.

A critical quantity here can represent p, d, Q, and T.

By mathematical manipulation of the order quantities and the cycle length for both

substitute and complement cases, we can claim

hi- Pl bs £ 30
Q- 2 (30)
Tc:: Tb.c

—<l1 (31)
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Condition (30) states that the EOQ for complements under both the Cournot-type and
Bertrand-type Models are greater than the EOQ for substitutes. Hence, the amplitude
of cycle length for complements, that is the EOQ level for complements, is higher than
that for substitutes. On the other hand, condition (31) states that the cycle length for

substitutes are longer than that for complements.

7. Concluding Remarks

In this paper, we developed and analyzed two duopoly models for complements.
From the first order necessary and the second order sufficient conditions, it was shown
how the optimal inventory and pricing policies were derived. As a special case, the
symmetric demand and cost were assumed and the closed form inventory and pricing
policies were obtained at equilibrium. Comparing substitutes with complements, we
showed that the Bertrand-type competition was more efficient than the Cournot-type
competition and the sellers tended to have higher EOQ for complements than that for
substitutes. This paper can be extended by designing and analyzing different market
behavioral assumptions, such as the Stackelberg model and the price leadership with
several sellers or several products (see e.g.. Mas-Collel 1995; Varian 1992). Furthermore,

nonlinear demand functions and inverse demand functions need to be addressed.
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GENERAL CONCLUDING REMARKS

Summary of Dissertation

In this dissertation, inventory, investment, and pricing policies for lot-size decision
makers were examined based on classical economic order quantity. Specifically, we fo-
cused on investment in setup operations, investment in quality improvement, and market
dependent products such as substitutes and complements. We examined various impacts
of investment and competition on inventory policies and derived managerial insights and
economic implications. Throughout this dissertation, deterministic mathematical pro-
gramming was used as the primary analysis technique and optimal policies were obtained
through this technique.

In order to investigate the impact of investment, first, we focused on inventory and
investment in quality improvement under ROI maximization. Next, we focused on inven-
tory and investment in setup operations under return on investment (ROI) maximiza-
tion. Also, we were investigating inventory and capital investment allocation policies in
setup and quality operations under ROI maximization. Furthermore, we were comparing

and contrasting inventory and investment policies under ROI maximization with those
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policies under other economic/finance performance criteria such as profit maximization.

In order to investigate the impact of competition, on the other hand, we first designed
and analyzed two duopoly models for two profit maximizing sellers when products are
substitute. we also designed and analyzed two duopoly models for two profit maximizing
sellers when products are complement. Furthermore, we compared and contrasted these
models.

In each chapter, there were several interesting managerial insights and economic
implications and numerical examples were illustrated. We conclude this dissertation by
summarizing contents in each chapter below.

In Chapter 1, we constructed and analyzed inventory and investment in quality
improvement policies under ROl maximization. Specifically, first, we showed how an
ROI maximization problem is formulated. Next, the unique global optimal solution is
determined by employing the primary criterion of ROI maximization and the secondary
criterion of the prior order quantity minimization. In addition, we showed how the
levels for the prior and posterior order quantities are reduced when it is optimal to
invest additional money in qu(;a.lity improvement.

In Chapter 2, we constructed and analyzed inventory and investment in setup oper-
ations policies under return on investment (ROI) maximization. Specifically, we showed
how an ROI maximization problem is formulated and the unique global optimal solution
is determined. Furthermore, we showed how the inventory level is reduced when it is
optimal to invest additional money in setup operations. There are several extensions

that will further enhance the importance and relevance of our model.
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In Chapter 3, we constructed and analyzed inventory and capital investment allo-
cation policies under return on investment (ROI) maximization. Our model was con-
structed for a decision maker of a single product with a budget constraint in capital
investment. We showed how the levels for the prior and posterior order quantities are
reduced when it is optimal to invest additional money in setup cost reduction and/or
quality improvement. An illustrated numerical example was provided in order to show
sensitivity analysis of unit variable cost.

In Chapter 4, we investigated inventory policies and investment in setup operations
policies under profit maximization and ROI maximization. First, we studied how a
profit maximization problem and an ROI maximization problem are formulated. Sec-
ond, we examined the unique global optimal solution by the primary criterion of profit
maximization or ROI maximization and the secondary criterion of the order quantity
minimization. Furthermore, by employing the secondary criterion, we compared and
contrasted the unique global optimal solutions under profit and ROl maximization. Fi-
nally, under the assumption of rational and linear setup cost functions, we first obtained
the unique global optimal solutions and provided the decision making rules to determine
the unique global optimal solution.

In Chapter 5, we designed and analyzed two duopoly models for substitute products.
We showed how the optimal inventory and pricing policies were derived from the first or-
der necessary conditions for both the Cournot-type model and the Bertrand-type model.
We further showed how the inventory and pricing policies were obtained at equilibrium.

Next, under the assumption of symmetric costs, we obtained the closed form inventory
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and pricing policies at equilibrium.

In Chapter 6, we developed and analyzed two duopoly models for complements. From
the first order necessary and the second order sufficient conditions, it was shown how
the optimal inventory and pricing policies were derived. As a special case, the symmet-
ric demand and cost were assumed and the closed form inventory and pricing policies
were obtained at equilibrium. Comparing substitutes with complements numerically, we
showed that the Bertrand-type competition was more efficient than the Cournot-type

competition and the sellers tended to have higher EOQ for complements than that for

substitutes.

Future Research

In this section, we proceed to describe our future research direction. Even though
we have focused on inventory and investment policies as well as inventory and pricing
policies in this dissertation, it would be of interest to study the effects of investment and
pricing policies simultaneously in order to analyze inventory reduction.

Furthermore, we can extend our single product inventory model with the capital
budget constraint to several products that have economic relations (i.e., substitutes and
complements). Furthermore, it would be of interest to analyze various scenarios such as
rework and/or salvage value of the defective items by considering not only investment
policies but also pricing policies. By relaxing traditional EOQ assumptions, our models
include incorporation of more sophisticated features such as shortages, delivery lags,

and stochastic demand rates, etc. In addition, it is interesting to analyze inventory
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and investment policies or inventory and pricing policies by employing more general

relationships (i.e., nonlinear cases).
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