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GENERAL INTRODUCTION 

General Background and Objectives 

In this dissertation, inventory, investment, and pricing policies for lot-size decision 

makers are examined beised on classical economic order quantity (EOQ; see e.g., Hillier 

and Lieberman 1995). Specifically, we focus on investment in setup operations, invest­

ment in quality improvement, and market dependent products such as substitutes and 

complements. We examine various impacts of investment and competition on inventory 

policies and derive managerial insights and economic implications. Throughout this 

dissertation, deterministic mathematical programming is used as the primary analysis 

technique and optimal policies are obtained through this technique. 

The primary objectives and contributions of this dissertation are as follows: Our 

objectives consist of examination of 1) inventory and investment relationships as well as 

2) inventory and competition relationships. 

For the inventory and investment relationships, we construct and analyze inventory 

and investment in setup operations policies, inventory and investment in quality im­

provement policies, and inventory and capital investment allocation policies in setup 
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and quality operations under return on investment (ROI) maximization, where ROI is 

defined as the ratio of profit to average investment. In each analysis, we consider the 

benchmark problem, in which a decision maker does not have an option to invest any 

additional money. Based on this problem, we consider the another problem, in which 

a decision maker has an option to invest additional money in setup operations and/or 

quality improvement. The resulting contributions are the establishment of an ROI model 

with/without the capital budget constraints and characterization of the unique global 

optimal solution when there exists an option to invest in setup operations. We also 

show how the inventory level is reduced when it is optimal to invest additional money 

in setup operations and/or quality improvement. Furthermore, we are comparing and 

contrasting inventory and investment policies under ROI maximization with those poli­

cies under other economic/finance performance criteria such as cost minimization and 

profit maximization. 

For the inventory and competition relationships, on the other hand, we design and 

analyze two duopoly (two sellers) models for two profit maximizing sellers when prod­

ucts are substitutes or complements. Competition is characterized by the Cournot-type 

model, in which each firm predicts the other firm's quantity first in deciding its own 

quantity, and the Bertrand-type model, in which Each firm predicts the other firm's 

price first in deciding its own price. The resulting contributions are formulation of in­

ventory and pricing policies for substitutes and complements. Furthermore, we obtain 

the closed-form inventory and pricing policies at equilibrium when symmetric demand 

and cost are assumed. 
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Now, we focus on overall background for this dissertation. Traditionally, there are 

numerous papers analyzing cost minimization and profit maximization, and ROI max­

imization cis economic/finance performance criteria (see e.g., Schroeder and Krishnan 

1976). Furthermore, there are numerous papers analyzing setup cost reduction inven­

tory models, quality improvement inventory models and capital allocation inventory 

models (see e.g., Porteus 1985; Lee and Rosenblatt 1985; Hong, Xu, and Hayya 1993). 

Given price and demand rate, however, in deciding the optimal level of investment 

for quality improvement and setup operations, it would be inherently suboptimal for 

ROI maximizing decision makers to utilize the existing models constructed for cost-

minimizing/profit-maximizing decision makers. This dissertation is motivated by the 

lack of mathematical models with ROI as an economic/finance performance criterion 

when the option of investing in quality improvement and/or setup operations exists. 

The just-in-time (JIT) or zero inventory philosophy leads to reduction in the lot size 

as small as possible. Investing in setup operations is an important aspect of the .JIT 

philosophy. However, when a production process is not reliable, the JIT philosophy is 

not efficient, e.g., loss of sales. Hence, it is also important to consider investment in 

quality improvement to apply for the JIT philosophy (see e.g., Voss 1987). 

Also, in this dissertation, competition is characterized by duopoly (two sellers), a 

Cournot-type model and a Bertrand-type model (see e.g., Varian 1992). Furthermore, 

characterization of products used for duopoly models in this dissertation is considered as 

substitutes and complements. Substitutes are products that can be substituted for each 

other such as coffee and tea. On the other hand, complements are products that can be 
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used together such as coffee and sugar. Each seller is assumed to produce one product, 

and his competitor is assumed to produce substitutes or complements. Even though 

there have been extensive studies of substitutes and complements in the literature of 

economic theory, to my knowledge, there have been few papers dealing with substitutes 

and complements in the context of inventory policies. Hence, given the prevalence of 

substitutes and complements in the real world, it is highly desirable to derive economic 

implications and managerial insights in the context of inventory. In thses analyses, profit 

maximization is used as economic/finance performance criterion. 

Finally, we note that the classical EOQ model has been studied continuously for 

several decades and numerous extensions have been made (see e.g., Arcelus and Rowcroft 

1992). Furthermore, various papers in the industrial engineering literature have utilized 

the EOQ type models or measured their own models against EOQ type models (e.g., 

Liao and Shyu 1991; Johnson and Montgomery 1994). Likewise, in this dissertation, we 

attempt to preserve the general framework of the EOQ model as much as possible, while 

extending it to the case of inventory, investment, and pricing policies. 

Thus far, we have discussed overall objectives, key contributions, and background. 

Let us now proceed to discuss the overall scope of this dissertation. First of all, all 

variables and parameters are assumed to be deterministic. Under a traditional EOQ 

model, the demand rate of product is considered to be constant and deterministic because 

the lifetime of product is assumed at maturity for the product Hfe cycle, development 

- growth - shakeout - maturity - saturation (see e.g., Nalimias 1989). As a dependent 

demand system, in an integrated manufacture system including the wholesale and retail 
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level, the production-lot-sizing decisions at one level of the system result in the demand 

patterns at other levels. The interaction between them plays an important role and this 

is called materials requirements planning systems (MRP; see e.g., Nahmias 1989). In 

this dissertation, we will not focus on dependent demand system such as MRP. 

Now, let us examine cost components in this dissertation. Under the profit max­

imization model (see e.g., Whitin 1955; Ladany and Sternlieb 1974), there are three 

components of the total cost: the holding cost, the setup cost, and the unit variable 

cost. The holding cost is the cost of warehousing, taxes and insurance, damaging or los­

ing, and any other cost directly related to the amount of inventory on hand. The setup 

cost is the fixed cost independent of the size of the order such as machine changeovers, 

postage, and telephone calls. The unit variable cost is the cost depending on the amount 

of inventory procured. Under the ROI maximization model (see e.g., Schroeder and 

Krishnan 1976; Rosenberg 1991), in addition to the above three components, we will 

consider capital investment in setup operations and/or quality improvement. 

As for additional assumptions in this dissertation, we follow the traditional inventory 

zissimiptions such as the replenishment rate is infinite, no shortage is allowed, and there 

is no delivery lag unless otherwise specified. If the replenishment rate is considered to 

be infinite, this is good approximation when the production rate is much larger than 

the demand rate (see e.g, Nahmias 1989; Banks and Fabrycky 1987). Also, if a shortage 

occurs, the penalty cost is imposed because there is not sufficient stock on hand to meet 

a demand. Since we assume the constant and deterministic demand, it is rezisonable to 

assume that there is no shortage. Furthermore, it is very difficult in practice to estimate 
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the loss-of-goodwill of the penalty cost. Finally, another assumption of the traditional 

EOQ model is that there is no delivery lag. In order to eliminate variability of the 

delivery lag, close cooperation with suppliers is required in the traditional EOQ model 

(see e.g., Nahmias 1989; Silver and Peterson 1985). In addition, it does not consider 

strikes and weather problems to cause delivery delays periodically in this dissertation. 

Additional issues regarding our scope of this dissertation are as follows; Under the 

inventory control, estimates of future demand by forecasting techniques, such as a mov­

ing average forecast and an exponential smoothing forecast, are the initial stage for 

production scheduling and planning (see Silver and Peterson 1985). Nevertheless, since 

we consider the constant deterministic demand, we don't further analyze any details in 

this field. Also, off-setting factors for the inventory control (e.g., discounts and rebates) 

have been considered as an all-units discount model or an incremental discount model. 

Under the traditional EOQ model, the unit variable cost is independent of the size of 

the order so that there is no off-setting factor. 

Furthermore, under inflationary economic conditions, traditional inventory models 

are developed (see e.g., Hariga 1994). However, with current small scale of inflation 

relative to 1970s and 1980s, both inflation and time value of money are disregarded in 

this dissertation. Most senior managers view today that keeping inventories does not 

lead to a measure of wealth but a large potential risk. However, we don't consider risk 

for firms or sellers through this dissertation. In addition, we note that location theory of 

sellers has been widely analyzed in the literature of Economics, Finance, and Marketing. 

However, we do not consider the impact on the location of sellers (e.g., the impact of 
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distance to the closest site) tiiroughout this dissertation. Also, the costs of two sellers 

are considered to be the same in a symmetric cost case. This indicates that even though 

functionally there are the same products, these are different such as color. 

Finally, from the above overall scope, we summarize scope and usage of each chapter 

in Table I and Table 2. 

Dissertation Organization 

Thus far, we have discussed overall backgrounds, objectives, key contributions and 

scope of this dissertation. Now, we e.xplain the organization of the dissertation. This 

dissertation consists of si.x papers published, prepared for submission or submitted in 

some proceedings and journals. 

In Chapter I, titled "Inventory and Investment in Quality Improvement under Re­

turn on Investment Maximization," we construct and analyze inventory and investment 

in quality improvement policies under return on investment (ROI) maximization. In 

this paper, a decision maker has an option to invest additional money in quality im­

provement. We formulate the ROI model and characterize the unique optimal policies 

consisting of the order quantity and the level of investment in quality improvement. 

Furthermore, based on no option to invest additional money in quality improvement, we 

show how inventory is reduced when it is optimal to invest additional money in qual­

ity improvement. In addition, we derive closed-form optimal policies and managerial 

insights when the setup cost is a linear function of the level of investment. 



www.manaraa.com

8 

Table 1 Scope of inventory model and usage in each chapter 

Chapter 1 Chapter 2 Chapter 3 
Single product Yes Yes Yes 
Budget constraints No No Yes 
Space constraints No No No 
Infinite replenishment rate Yes Yes Yes 

Infinite time horizon Yes Yes Yes 
Quantity discount No No No 
Monopoly Yes Yes Yes 
Duopoly No No No 
Oligopoly No No No 
Perfect competition No No No 
Shortage No No No 
Lead time No No No 
Static demand Yes Yes Yes 
Static production rate Yes Yes Yes 
Total cost minimization No No No 
Profit maximization No No No 
ROI maximization Yes Yes Yes 
Setup cost reduction No Yes Yes 
Perfect product quality No Yes No 
Capital investment Yes Yes Yes 
Characterization of product No No No 
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Table 2 Scope of inventory model and usage in each chapter 

Chapter 4 Chapter o Chapter 6 
Single product Yes Yes Yes 
Budget constraints No No No 
Space constraints No No No 
Infinite replenishment rate Yes Yes Yes 
Infinite time horizon Yes Yes Yes 
Quantity discount No No No 
Monopoly Yes No No 
Duopoly No Yes Yes 
Oligopoly No No No 
Perfect competition No No No 
Shortage No No No 
Lead time No No No 
Static demand Yes Yes Yes 
Static production rate Yes Yes Yes 
Total cost minimization No No No 
Profit maximization Yes Yes Yes 
ROI maximization Yes No No 
Setup cost reduction Yes No No 
Perfect product quality Yes Yes Yes 
Capital investment Yes No No 
Characterization of product No Yes Yes 
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In Chapter 2. titled "'Inventory and Investment in Setup Operations under Return 

on Investment Maximization," we construct and analyze inventory and investment in 

setup operations policies under return on investment (ROI) maximization. We follow 

the basic model formulation of ROI maximization considered by Chen and Min (see 

Chen 1995). In this paper, a decision maker has an option to invest additional money 

in setup operations. VVe formulate the ROI model and characterize the unique optimal 

policies consisting of the order quantity and the level of investment in setup operations. 

Furthermore, based on no option to invest additional money in setup operations, we 

show how inventory is reduced when it is optimal to invest additional money in setup 

operations. In addition, we derive closed-form optimal policies and managerial insights 

when the setup cost is a rational or linear function of the level of investment. 

In Chapter 3, titled "Inventory and Capital Investment Allocation Policies under 

Return on Investment Maximization." we construct and analyze inventory and capital 

investment allocation policies under return on investment (ROI) maximization. Our 

model is constructed for a decision maJcer of a single product with a budget constraint 

in capital investment. We show how the levels for the prior and posterior order quantities 

are reduced when it is optimal to invest additional money in setup cost reduction and/or 

quality improvement. In addition, the unique global optimal solution is determined by 

employing the primary criterion of ROI maximization, the secondary criterion of the 

posterior order quantity minimization (i.e., inventory reduction), and the third criterion 

of the prior order quantity minimization. Moreover, we illustrate a numerical example 

to show sensitivity analysis of unit variable cost. 
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In Chapter 4, titled "Inventory and Investment in Setup Operations under Profit 

and ROI Maximization," we investigate inventory and investment in setup operations 

policies under a profit maximization model and a return on investment (ROI) maxi­

mization model. .'\s in Chapter 2, we follow the basic model formulations of profit/ROI 

maximization (see Chen's dissertation). Based on these formulations, we e.vamine the 

corresponding optimality conditions and study how inventory is reduced when it is op­

timal to invest additional money in setup operations. Furthermore, we compare and 

contrast the inventory reduction between the profit model and the ROI model. 

In Chapter 5, titled "Inventory and Pricing Policies for a Duopoly of Substitute 

Products," we design and analyze two duopoly models for two profit maximizing sellers. 

Each seller is assumed to produce one product, and his competitor is assumed to produce 

a substitute. In characterizing the competitive behavior of each seller, we employ a 

Coumot-type model and a Bertrand-type model and we derive the equilibrium conditions 

for both models. Dependency of demand and price are expressed by the linear demand 

functions, which are widely found in the literature of economics. 

In Chapter 6, titled "Inventory and Pricing Policies for a Duopoly of Complements," 

we design and analyze two duopoly models for two competing sellers. Each seller is 

assumed to be a profit majdmizing EOQ-based decision mciker facing linear demand 

functions. In this paper, based on Cournot-type and Bertrand-type competitive behav­

ioral assumptions, we design and analyze pricing and inventory policies for two sellers-

Each seller is assumed to produce one product, and his competitor is assumed to produce 

a complement. As mentioned before, dependency of demand and price are expressed by 
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the linear demand functions. 

Finally, general concluding remarks in this dissertation are described including chap­

ter reviews and further research followed by references cited in general introduction and 

general concluding remarks. Overall structure and chapter relationships are summarized 

in Figure i. 
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Inventory Reduction 

Chapters: 
Substitute 

Chapter 6: 
Complement 

Market dependent products 

Chapter 1: 
Investment in quality 
improvement 

Chapters: 
Investment and capital 
allocations 

Chapter 4: 
Different performance criteria 

Chapter 2: 
Investment in setup operations 

Figure 1 Overall structure and chapter relauonships 
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CHAPTER 1. INVENTORY AND INVESTMENT 
IN QUALITY IMPROVEMENT 

UNDER RETURN ON INVESTMENT MAXIMIZATION 

A paper submitted to IEEE Transactions on Engineering Management 

Toshitsugu Otake and K. Jo Min 

Abstract 

In this paper, we construct and analyze inventory and investment in quality im­

provement policies under return on investment (ROI) maximization. In our model, the 

level of quality is represented by the fraction of an order quantity meeting the quality 

requirements such £is product specifications. The key contributions of this paper are 

the establishment of an ROI model and characterization of the unique global optimal 

solution. We also show how the inventory level is reduced when it is optimal to invest 

additional money in quality improvement. In addition, we derive the unique global op­

timal solutions in closed-form when the investment in quality improvement is a linear 

function of the quality. Various interesting managerial insights and a numerical example 

are provided. 
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1. Introduction 

In this paper, we construct and analyze inventory and investment in quality improve­

ment policies under return on investment (ROI) maximization for a decision maker of an 

inventory system with a single product. By quality in this paper, we mean the fraction of 

an order quantity meeting the quality requirements such as product specifications. The 

primary contributions of this paper are: (1) Formulation of the ROI model and charac­

terization of the unique optimal policies consisting of the levels of order quantity and 

investment in quality improvement, (2) Characterization of inventory reduction when 

it is optimal to invest additional money in quality improvement, and (3) Closed-form 

optimal policies and managerial insights when the investment in quality improvement is 

a linear function of the quality. 

We will now provide the background information for the quality first, the relation 

between the quality and inventory reduction next, followed by the performance criterion 

of ROI maximization. 

The quality issues for a product in an inventory system have been extensively stud­

ied. For example, Lee and Rosenblatt (1985) examine optimal inspection and ordering 

policies for products with imperfect quality. On the other hand, Cheng (1991) inves­

tigates an Economic Production Quantity (EPQ) model with process capability and 

quality assurance considerations. We note that both papers utilize the fraction of an 

order quantity that is acceptable (or unacceptable) to indicate the level of quality. Sim­

ilarly, in our model, we represent the level of quality by the fraction of an order quantity 

meeting the quality requirements such as product specifications. Hence, the quality im­
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provement implies an increase in this fraction. Furthermore, we assume that the quality 

improvement can be achieved by additional investment in equipment and training. 

The relation between the quality aud inventory reduction is critical for both practi­

tioners and academics because numerous modern production systems advocate reduction 

in inventory and improvement in quality. For example, Voss (1987) claims that Just-In-

Time production systems lead to increased quality and reduced inventory. In addition, 

Kekre and Mukhopadhyay (1992) show that there exists a negative relationship between 

inventory and quality based on empirical results. Moreover, Porteus (1986) studies 

the process quality improvement and the order quantity in conjunction with setup cost 

reduction. This work is extended by Hong and Hayya (1995) by considering budget con­

straints on quality improvement and setup reduction. For the last two papers, we note 

that the definition of quality is based on a Markovian process model for the probability 

of the production process becoming out of control, which is a fundamentally different 

way of looking at the quality of a production system (cf. the definition of quality in Lee 

and Rosenblatt (1985), Cheng (1991), and this paper). 

ROI is a widely utilized economic performance meaisure dealing with finished goods 

inventories (see e.g., Schroeder and Krishnan 1976; Morse and Scheiner 1979; and Reece 

and Cool 1978). Traditionally, numerous papers have employed the profit maximization 

or cost minimization as their objective in designing and analyzing inventory models 

(see e.g., Whitin 1955; Smith 1958; Ladany and Sternlieb 1974; Hillier and Lieberman 

1995). On the other hand, Schroeder and Krishnan (1976) propose an inventory model 

under an alternative performance criterion of ROI maximization. Also, Rosenberg (1991) 



www.manaraa.com

17 

compares and contrasts profit maximization vs. return on inventory investment with 

respect to logarithmic concave demand functions. 

This paper is motivated by the lack of inventory models under ROI maximization 

when there exists an option to invest in quality improvement. Since one of the most 

frequently utilized economic performance criteria in inventory systems other than profit 

maximization/cost minimization is that of ROI maximization, a comprehensive and 

quantitative study of ROI maximization is highly desirable. In deciding the optimal 

level of investment in quality improvement, it would be inherently suboptimal for ROI 

maximizing decision makers to utilize any other models constructed for profit maximiza­

tion/cost minimization decision makers. The comprehensive and quantitative study is 

also desirable because the existing literature qualitatively discusses the link between 

ROI and the inventory reduction (see e.g., Oakleaf 1972). 

The rest of this paper is organized as follows. We first formulate the ROI maximiza­

tion model for inventory and investment in quality improvement, and characterize the 

unique global optimal solution. Next, under the assumption of fairly general class of 

investment function, we show how the inventory level is reduced when it is optimal to 

invest additional money in quality improvement. Then, for the specific case of a linear 

investment function, the optimal closed-form solutions are obtained and several inter­

esting managerial insights are presented. Finally, summary and concluding remarks are 

made. 
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2. Model Formulation and Optimality Conditions 

2.1 Definitions and assumptions 

First, various notations and their definitions used in this paper are as follows: 

Q\ the order quantity size prior to inspection. 

r: the fraction of an order quantity meeting the quality requirements. 

C: the variable cost per unit including per unit material cost and per unit inspection 

cost. 

/: the inventory holding cost per unit time expressed as a fraction of the unit cost, which 

excludes the opportunity cost of funds tied up in inventory. 

K: the investment in equipment and training so as to increase the level of r. 

P; the selling price per unit. 

D: the sales quantity per unit time. 

S: the setup cost. 

Given these notations, we assume that there is a decision maker who procures an 

order quantity of Q units of a product per cycle. This order quantity of Q units will 

be inspected, and we assume Qr units of the order quantity will meet the quality re­

quirements (i.e., Q is the prior order quantity while Qr is the posterior order quantity). 

The remaining Q(1 — r) units that do not meet the quality requirements are assumed to 

be discarded without any cost/value to the decision maker. The Qr um'ts meeting the 

quality requirements will be sold to customers at P per unit. 

[n this paper, the relationship between the fraction r and [\ is characterized by 
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K { r )  function, which is differentiable and increasing with respect to r. That is, we 

are assuming that, by investing more in equipment and training, the fraction r can be 

increased. Also, we are assuming that r is the decision variable (of course r{K) function, 

where K is a decision variable, is also feasible). Furthermore, for our analysis, we assume 

that, if ROI is non-positive for an ROI maximizing decision maker, the decision maker 

ceases to operate. Therefore, we focus on the case of positive ROI. 

Finally, the following simplifying assumptions are made throughout this paper, which 

are often utilized in EOQ-type papers (e.g., Morse and Scheiner 1979). 

(1) Shortage is not allowed. (2) The sales quantity per unit time and selling price per 

unit are deterministic and constant over time. 

2.2 Optimality conditions for Problem X 

In this paper, we consider two types of the ROI maximization problems of Problem 

X and Problem Y. Under Problem X, ROI is maximized over Q given the current level 

of the investment in equipment and training, AV, and the corresponding fraction of an 

order quantity meeting the quality requirements, vp (i.e., A> = A'(rf)). That is, the 

investment in equipment and training and the fraction of an order quantity meeting 

the quality requirements are assumed to be fixed. The total cost per unit time, TC, 

consists of the setup cost, the variable cost, and the holding cost and the investment 

in equipment and training. Given the posterior order quantity, Qr, the cycle length is 

e x p r e s s e d  a s  H e n c e ,  m a t h e m a t i c a l l y ,  w e  h a v e :  T C  =  - I -  ^  +  f c q r p  

Since the total revenue per unit time is the selling price per unit multiplied by the 
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sales quantity per unit time (i.e., P D ) ,  the profit per unit time, IT, is obtained by 

subtracting the total cost per unit time from the revenue per unit time, i.e., 0 = 

P D  -  T C .  

Let us now formally define ROL Traditionally, ROI is defined to be the ratio of the 

profit per unit time over the average investment per unit time (see e.g., Schroeder and 

Krishnan 1976). In our model, the average investment consists of the average inventory 

investment and the average investment in equipment and training. Mathematically, the 

average inventory investment is given by (i.e., only the fraction of an order quantity 

meeting the quality requirements will be stored a.s inventory). On the other hand, the 

average investment in equipment and training is given by K. Hence, ROI given by Kp 

is as follows: 

D  - ( p n  I C Q r p  C Q r p  ,  r -  \  

Since ROI is maximized over the order quantity, an equivalent model formulation (see 

Luenberger 1984) for Problem X is given by 

Problem X: min — Rp (2) 
Q>o 

Then, the first order necessary condition (FONC) for Problem X is 

S D  [ C r  R C r  „  

Qh' 2 2 ~ 

From the PONG (3), we obtain the following equation: 

QF =  [ C D S r p  + { I C D K p S r F M r  +  C ' D ' S h - j r n i C r p M F )  (4) 

where M.p = PDrp — CD — Kprp -j- I K p r p .  It can be verified that Q ' p  is unique and 

satisfies the second order sufficient condition (SOSC) at optimality. i.e., 

,5, 
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Hence, Q'p is the unique global optimal solution for Problem X and the corresponding 

ROI, Rp, is the global optimal ROI. 

2.3 Optimality conditions for Problem Y 

For Problem Y, the decision maker has an option to invest additional money in 

quality improvement. Hence, under Problem Y, ROI is maximized over Q as well as r 

for 0 < Vmin < r < Vmax < 1 where I'min represents the current level of r, rp, while Vmax 

represents the technologically feasible maximum fraction of an order quantity meeting 

the quality requirements. We will denote the corresponding investment in equipment 

and training ^{rmin) and K{r„iax) as /vmm and Amor, respectively. An equivalent model 

formulation (see Luenberger 1984) for Problem Y is given below. 

Problem Y: ^min^ _/? = ^ + A'- + A') (6) 

subject to 7-„„„ — 7- < 0 and r — r^ax < 0. 

From the FONC when r = rmm at optimality, we have 

Qmin = [ C D S r ^in + {2C D K,ninSr,,inM,nin + D'(7) 

t ^^Qmin _ CD , ,CQjnin r^, \ ̂  n /qx 

h j T n x n ' m m  ^  ' m t n  "  

where ^ evaluated at ?• = Tmm and yV(„„„ = PDj-„im - CD - K^inrmin + 

while Rmin is ROI evaluated at Q = Qmin and r = Vmin. 

In this case, it is easily verified that the SOSC is satisfied. Let us denote this 

boundary local optimal solution by {Qmin->^min) the corresponding ROI by 

(= RiQmin.r'^in))-

Likewise, from the FONC when r = r,nax at optimality, we have 
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Qmar = [CD^r^ax + {2C D + C^D^SVLxl^'^l/CCWxAfmax) (9) 

Qmax^rnax ^ ''i max 

where ^ evaluated at r = r^ax and M^ax = PDr^ax - CD - Kmaxrmax + 

IKmax^max whilc R^ax's ROI evaluated at Q = Qmax and r = r„,ar. In this case, it is 

also easily verified that the SOSC is satisfied. Let us denote this boundary local optimal 

solution by (Q;;.ariCar) ^nd the corresponding ROI by (= R{Q'rr,ax^r'^ax))-

Finally, let us consider the case when r = 7',„{ G [rmin-, ^max) at optimality. We denote 

the corresponding investment in equipment and training /v (r,nt) by Then, we have 

Qi^t = [CDSrint + {2CD{{intSri„,Mint + (11) 

SD CIQint CD , ,CQint r., 
„2 ' o ,.2 ' int r titnti. "I"  ̂ (12) 

y.ntr.nt -  'int -

where ^ evaluated at r = and Mint = PDvi^t - CD- KiniVint + ̂ Kmtnnt 

while Rint is ROI evaluated at Q = Q,„j and r = 7\„(. Let us denote an interior local 

optimal solution by ((3-,u,r7„J and the corresponding ROI by (= /2((5-„£,r-„J). At 

optimality, we aissume that the following second order sufficient condition is met for an 

interior solution in our analysis: 
4C5D2 2SDK" 2SDRK" 

Q3r4 + Q3r + Q3,. (13) 

where K" = 

In summary, for Problem X, there always exists a unique global optimal solution 

because there is only one local optimal solution. On the other hand, for Problem Y, 

further analysis is needed to determine the global optimal solution because there may 
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be multiple interior and/or boundary local optimal solutions. This is the topic of the 

next section. 

3. Optimality Analysis 

3.1 Derivation of global optimal solutions 

Under Problem X, it can be easily verified that there exists a unique global optimal 

solution. Under Problem Y, however, the argument for the unique global optimal so­

lution is no longer straightforward. In this subsection, we will first address (possible) 

multiple global optimal solutions (In Subsection 3.3, we will address the determination 

of the unique global optimal solution). Let us first characterize interior local solutions 

when they exist. 

From equations (11) and (12), the following relation can be obtained: 

where CD - CK;,,rf„, + Cl/ v >  0  f o r  a n  i n t e r i o r  o p t i m a l  s o l u t i o n .  S u b s t i t u t i n g  

equation (14) into the objective function (6), we see that the optimal ROI is expressed 

cis a function of r only, R{r). Since we have a function of a single variable, all interior 

optimal solutions can be obtained by simple numerical methods such as Newton's method 

(see Luenberger 1984). Let us now suppose that there are n (n > 1) interior local optimal 

solutions designated by {Q\nor\;^t), i = l,...,n. We denote the corresponding ROIs by 

^ 1 , . . . ,  71 .  

By considering the two (possible) local boundary optimal solutions characterized by 

(14) 
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conditions (7), (8), (9), and (10), we have a total of n + 2 possible local optimal (interior 

and boundary) solutions. Hence, these local optimal solutions represent all possible 

candidates for a global optimal solution, which may not be unique. The existence of a 

global optimal solution can be shown via real analysis (see e.g., Apostol 1974 on page 

83). Let us denote a global optimal solution by and the corresponding ROI 

by RQ . Let us also denote a unique global optimal solution by {QUCV IJQ ) and the 

corresponding ROI by R'uc,' We will utilize the global optimal prior order quantity QQ 

in the following analysis of inventory reduction. 

3.2 Reduction in the prior order quantity 

In this subsection, we will examine if the option to invest in quality improvement 

leads to reduction in the prior order quantity. In order to show this, we will compare 

the global optimal prior order quantity for Problem X, Qp-, with that for Problem Y, 

Q'c 

From the FONC of Problem X, we have 

Qp = {{:2SD)lrlC{I + R}-)Y-' (15) 

where R'p is the global optimal ROI at Q'p- for Problem X. Similarly, from the FONC of 

Problem Y, we have 

Qh = {{'^SD)lr'JC[I + R'c)}°-' (16) 

where R'^ is the global optimal ROI at Q}; for Problem Y. Based on (15) and (16), 

the relationship between the global optimal ROI and the reduction in the prior order 

quantity is summarized in Proposition 1. 
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Proposition 1. Reduction in Prior Order Quantity 

1) U RQ = Rmint then the reduction in the prior order quantity is zero. 

2) If RQ = then the reduction in the prior order quantity is Q}- — 

3) If RQ = R^AX^ the reduction in the prior order quantity is given by Q}- — (Jmax-

PROOF: Let us suppose that RQ = /?,'«,n- Then, QQ = Q^IN — Q'F ^he level of 

the prior order quantity remains the same. Let us now suppose that RQ — for any 

given i. Then, we observe that C{f + R'p) < C(/ + RQ) since R^^^ > R'p, and rp < 

Therefore, Qj", < Q'p, i.e., the prior order quantity is reduced. Likewise, let us suppose 

that RQ = R'JNAX- Then we observe that C{I + R'p) < C{I + RQ) since R'^^X ^ 

rp < Therefore, QHAR < Q'F- i-®-' order quantity is reduced. • 

Hence, with the option to invest additional money in quality improvement, the prior 

order quantity will be reduced or remain the same. In particular, if the decision maker 

finds it optimal to invest additional money in quality improvement, the prior order 

quantity will be always reduced. In the next subsection, we examine the uniqueness of 

global optimal solutions. 

3.3 Uniqueness of global optimal solution 

Thus far, for Problem Y, it is possible to have multiple global optimal solutions. In 

this subsection, we will employ an additional criterion to induce a unique global optimal 

solution. The additional criterion is: if the levels of ROI are the same, then the global 

optimal solution with the smallest prior order quantity will be preferred. The rationale 

is that, given that the same levels of financial performance (i.e., ROI levels), the smallest 
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prior order quantity is the most preferable due to factors that are external to this model 

such as inspection resource requirements (e.g., less inspection equipment, facility, and/or 

space are required for smaller prior order quantity). 

In our model formulation for ROI maximization, given the multiple global optimal 

solutions with RQ, we can show that the lowest prior order quantity is associated with the 

largest investment in equipment and training as follows. Let us suppose that = 

RQ where and RQ are ROIs corresponding to and r^*, respectively, satisfying 

0 < rmin S - 'mnr < 1- Then, since KQ < /\^* and RQ = 

RG — Q'G ^ Qc previous subsection. We now summarize this hierarchical 

determination of the unique global optimal solution as follows: 

If there are more than one global optimal solutions under the ROI maximization as 

the primary criterion, then the global optimal solution with the largest investment in 

equipment and training will be the unique global optimal solution under the prior order 

quantity minimization as the secondary criterion. 

3.4 Reduction in inventory 

In this subsection, we will further analyze if the option to invest in quality improve­

ment leads to reduction in the posterior order quantity. Reduction in the posterior order 

quantity leads to reduction in inventory since the level of inventory is based on the level 

of the posterior order quantity. Similar to Subsection 3.2, we will compare the unique 

global optimal posterior order quantity for Problem X, Q'prp-, with that for Problem Y, 

Qug^UC 
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From the FONC for Problem X, we have 

£3J.rF = {(25fl)/lC(/ + flJ.)|r= (17) 

Similarly, from the FONC for Problem Y, we have 

Q'ucr'ua = mD)J[C{I + Rla)]}°-' (18) 

Let us first assume that there is single unique global optimal solution based on the 

primary criterion only. Then, from (17) and (18), if {QUC'^^'UG) ¥" then 

^ Hence, Qua'''uc < Q'prp and the inventory is reduced. On the other hand, 

if {Q'UG^^'UG) = (<5mm.'mm). ^hen RLC = R'F- Hence, QL/ARUA = Q'F^F and there is no 

reduction in inventory. 

Let us now assume that there are multiple global optimal solutions bzised on the 

primary criterion, and one unique global optimal solution is determined based on the 

secondary criterion of the prior order quantity minimization. Then, if {Qmim^min) 

not a global optimal solution, then RI/Q > R'p and the inventory is reduced. On the 

other hand, if (Qm,-„,r^,-„) is a global optimal solution, then RI;Q = and there is no 

reduction in inventory because Qua^'uc = = Qprp-

Bcised on these observations, we present the following proposition. 

Proposition 2. Reduction in Inventory 

Case 1: When single unique global optimal solution is determined by the primary 

criterion only: 

A-) If (Qac'^uc) ¥" (Qmf7uCm)> then the inventory is reduced by Qprp - Qud^uo-

B) If {QUG^^UG) — iQmin^^min)^ ^hen there is no reduction in inventory. 

Case 2: When there are multiple global optimal solutions by the primary criterion and 
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A) If (Qmini^min)^ global Optimal solution by the primary criterion only, then 

the inventory is reduced by Q'^rp — Quc/uc-

B) If {Qmim^'inin) ^ global Optimal solution by the primary criterion only, then 

there is no reduction in inventory. 

PROOF: Let us suppose that single unique global optimal solution is determined by 

the primary criterion only. Then, if iQlroi^ua) ¥" inventory is reduced 

BY —QUG Î/O because C { f  +  R ' p )  <  C [ I  + R'UC). If {QUAI'^'uG) — (Qmmi''mm)) 

then C{I + R'p) = C{I + R'uo) so that there is no reduction in inventory. 

Now, let us suppose that there are multiple global optimal solutions by the primary 

criterion and one unique global optimal solution is determined by the secondary criterion. 

If is not a global optimal solution by the primary criterion only, then C{/ + 

R'p) < C(/ + Rue) so that the inventory is reduced by Q'pVp — Qy^r UG' Likewise, if 

^ global Optimal solution by the primary criterion only, C[l + R'p) = 

C(/ + Rua) so that there is no reduction in inventory. • 

3.5 Further anzdysis of unique global optimal solution 

In this subsection, we provide an alternative way to determine the unique global 

optimal solution by utilizing characteristics of local optimality. This method provides 

managerial insights and does not depend on the actual calculations of ROIs. From the 

FONC for Problem Y, we have 

R = (25D)/(CQV)-/ (19) 
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Let us first assume that there are local optimal solutions at K = and K = 

i.e., there are two local optimal solutions and both of them are boundary local optimal 

solutions. We modify equation (19) in order to obtain the following equivalent conditions: 

ft;.. > (25D)/(Cl3;?„r,-„"„) - / > - / 

'• ^^(min,max) — ^Q[min,max) (20) 

where and Let us denote inequality 

condition (20) by C l .  We note that ^ f '(min,max) change in the fraction of 

an order quantity meeting the quality requirements due to the increase in investment in 

equipment and training from f\ = A.'*,,-,, to h' = measured from the local optimal 

investment level /\max- Similarly, ^Q(,nin,max) ""ate of change in the prior order 

quantity due to the increase in investment in equipment and training from /\ = 

to K = f^^ax Pleasured from the local optimal investment level Hence, ROI at 

K = K^axgreater than or equal to that at /v = if and only if the rate of change 

in the fraction of an order quantity meeting the quality requirements is less than or 

equal to that in the prior order quantity. 

Thus far, we have shown an alternative way to describe the relation between the 

two boundary local optimal solutions. Let us now assume that, in addition to the 

two boundary local optimal solutions, there is only one interior local optimal solution 

(Qinti^int) ^inf Then, We can derive the following equivalent relations: 

^max ^ ^^'lint,max) ^ ̂ Q{int,max) (21) 

^int ^ ^tiuu ^ ̂ Q{viin,inl) (22) 
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whprp Ar* = \n' = A,.- — ''inr~''min anH wnere , -AV„ax) - Q«„, ' ^Umm.int) - r,-„, ' 

^^(minint) ~ ' ^.et US denote the inequality conditions (21) and (22) by C2 

and C3, respectively. 

If there are multiple interior local optimal solutions, inequalities similar to (20), 

(21), and (22) can be employed to obtain the unique global optimal solution among the 

interior local optimal solutions only. Let us denote such a solution by ((J/yvx, rj^^) with 

^INT-

Now, the unique global optimal solution can be determined as follows. If there 

exist all three types of local optimal solutions, i.e., (Q,'imiCm)i ^nd 

(Qmoxi^mox)) ^^^^t examine if C2 holds. (1) If C2 holds, then examine if CI holds. 

If CI holds, the unique global optimal solution is {Q'naxiKiax) with R}JQ = Oth­

erwise, the unique global optimal solution is (2) If C2 does not hold, then 

examine if C3 holds. If C3 holds, then the unique global optimal solution is 

with RI;Q = R'lufT- Otherwise, the unique global optimal solution is RIIQ = 

If there exist two types or one type of local optimal solutions (e.g., 

{Qmaxi^max))^ ^ similar approach can be used to determine the unique global optimal 

solution. Therefore, we now have an alternative way to determine the unique global 

optimal solution. 
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4. Analysis under a Linear Investment Function 

So far, we have assumed fairly general classes of investment functions. In this section, 

we show additional managerial insights by employing a linear investment function. 

Let us suppose that the investment function is K { r )  =  0 r  where 1 3  is a positive 

constant. We note that an increase in /? leads to the upward shift of the investment 

function. Hence, for a given level of the fraction of an order quantity meeting the 

quality requirements, the increase in (5 raises the investment in equipment and training. 

Furthermore, when is large, more investment has insignificant impact on the fraction 

of an order quantity meeting the quality requirements. On the other hand, when 

is small, more investment has significant impact on the fraction of an order quantity 

meeting the quality requirements. 

From conditions (7) and (8), the local optimal solution at r = is characterized 

by 

=  [ C D S  + (WCDSM-^,,, + C'£I=5=)''-=I/(CA(;,.J (23) 

' 'mm ~ ''min (24) 

+ > 0 and = PDrV„-
^ m t n '  m t n  mm 

Also, the local optimal solution at r = is, from conditions (II) and (12), 

0 , =  J -  l l C r ; i , W  +  g C l r ^ U f f )  

_ 20CDP + ̂ 2|3C^'DS[-A0C^ \~l) + DP^+ 2C5( 1 - /)| 

Q D P ' ^  ^ 2 0 C S { \ - 1 )  ^  '  
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We note that the interior local optimal solution given (25) and (26) is unique. In 

ad d i t i o n ,  i f  t h e  l o c a l  o p t i m a l  s o l u t i o n  i s  a n  i n t e r i o r  s o l u t i o n ,  t h e n  D P " ^  +  2 C { S  —  2 P ) { \  —  

I) > 0. Furthermore, the second order sufficient condition given by (13) is always 

satisfied by the solutions of (25) and (26). 

Finally, by conditions (9) and (10), the local optimal solution at r = is given 

by 

= [CDS + (2^CD5X;„ + (27) 

'"'max ~ "'max (28) 

where _ < 0 and M;,,, = PDr'^,,-
^max' max 'max 

CD-/3r'J,, + 0lvZ.. 

We now will comprehensively analyze the optimal behavior of /?, Q, and K with 

respect to parameter /3. First, it is easily verified that R is a decreasing function with 

respect to 0. Next, let us define the critical value of /?, 0i. Mathematically, 

A = mm {(3] subject to R'ucXl^) = R'nM (29) 

fii defines the minimum /? value at which the unique global optimal RIJQ is equal to 

Rmin- Likewise, we can define three additional critical values of (5^ 02, 0a, and 0b-

Mathematically, 02=^m&x{0} subject to R'uaW) = R'maxW) (30) 

0Ae{m'F{P) = O,0>O} (31) 

0Be{0\RuGil3) = O,0>O} (32) 

It can be verified that 0 i ,  /?2, 0A, and 0B are either uniquely determined or non-existing. 

Let us first examine the case where all four critical values exist. Then, it can be shown 

that 02 < 01 and 0A ̂  0B- It can also be shown that all possible relative positions of 
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/?ij /?2) PAI and PB are characterized in the following six cases: 

If /?i = /3a) then /?2 < = 0B (Case (a); see Figure La). 

If < PA, then /?2 < = PB (Case (b); see Figure Lb). 

If Pi > PA, then the following four cases may happen. 

PI < PA < PB < P\ (Case (c); see Figure l.c), PA < PI < PB < PI (Case (d); see 

Figure Ld), PA < PB = PI < PI (Case (e); see Figure l.e), and PA < PB < P2 < PI 

(Case (f); see Figure Lf), 

First, from Figure La, Figure l.c, and Figure Ld, if P < p2, then the decision maker 

will invest additional money in quality improvement where K = U P2 < P < PB, 

then the decision maker will invest additional money in quality improvement where 

A' = K'^I. That is, when p-z < P < PB, A' = will not be optimal. If PB < P^ then 

the decision maker will cease to operate because the optimal ROI level is not positive. 

Hence, for Cases (a), (c) and (d), it is never optimal not to invest any additional money 

in quality improvement. 

Also, from Figure Lb, if < P2, then the decision maker will invest additional 

money in quality improvement where A' = K^ax- P-2 < P < PI, then the decision 

maker will invest additional money in quality improvement where K = That is, 

when P2 < P < PI, A' = A',*„^ will not be optimal. If < /? < 0B, on the other hand, 

then the decision maker will not invest any additional money in quality improvement. 

Furthermore, if PB < /?, then the decision maker will cease to operate. 

Finally, from Figure Le and Figure Lf, Hp < PB, then the decision maker will invest 

additional money in quality improvement where AT = PB ̂  P, on the other 
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hand, then the decision maker will cease to operate. Hence, for Cases (e) and (f), it is 

only optimal to invest at the maximum in quality improvement. 

In addition, for Cases (c), (d), (e), and (f), for PA ^ P < PB, ROI for Problem 

X is non-positive while ROI for Problem Y is positive. Hence, by investing additional 

money in quality improvement, the decision maker will operate with positive ROI (and 

not cease to operate). 

Moreover, as mentioned in Subsection 3.2, if the decision maker finds it optimal 

to invest additional money in quality improvement, the prior order quantity is always 

reduced. Hence, the unique global optimal prior order quantity for Problem Y, QI/Q, 

is always bounded above by the unique global optimal order quantity for Problem X, 

Qp. In addition, we observe that the fraction of an order quantity meeting the quality 

requirements for Problem Y, ri/Q is bounded below by that for Problem X, vp. 

Thus far, we have e.xamined the case where all four critical values exist. We note that 

similar analyses can be done where some critical values do not exist. The subsequent 

analyses are simpler because of the absence of some critical values of /?. We now proceed 

to illustrate some of the features in the following numerical example. 

Example 1 

Let us suppose that C = SlOO, D = 25 per month, I = 0.1 per month, P = $500, 

S — $1000, Tmiv. — 0.65 and 7'„inr = 0.95. Then, the four critical values of 0i, jSj, /3a> 

and (3b are 1072, 243, 12226, and 12226, respectively. The corresponding Qp, Qprp, 

Qugi Ql/G^'hcf ^l/G summarized in Table 1. 

First, we recognize that this example is Case (b) in Figure L Hence, as 0 increases. 
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ROIs for Problems X and Y decrease. When < (3 < /?b, we observe that ROIs are the 

same while, when /3 < Pi, ROI for Problem Y is strictly greater than ROI for Problem 

X. Furthermore, when (3 < /?2, the decision maker will invest additional money in quality 

improvement where R = R^ax-

Also, it can be shown that, as 0 increases, the prior and posterior order quantities 

for Problem X and Y increase. However, it can be verified that, when (3\ < /3 < PBI the 

order quantities are the same while, when P < jSi, the order quantity for Problem X is 

strictly greater than that for Problem Y. That is, U P < /?i, then inventory is reduced 

when there is an option to invest additional investment in quality improvement. 

In addition, it can be shown that, when /? < /?i, the fraction of an order quantity 

meeting the quality requirements for Problem Y decreases as 0 increases. On the other 

hand, it can also be shown that, when < 0 < 0bi the investment level in equipment 

and training for Problem Y remains the same as that for Problem X, i.e., no additional 

investment to improve quality is the optimal policy. On the other hand, P < 01, the 

decision maker will invest additional money in quality improvement. Finally, when 

0B < 0, the decision maker ceases to operate. That is, even if the decision maker invests 

additional money in quality improvement, nonpositive ROI level results. 

Table 1 Sensitivity analysis of change in 0. 

0 

Problem X Problem Y 

0 Q'F Q'FVF R'p QUG '''ire QUG'''UG ^UG 
243 11.029 7.16885 9.630 7.2684 0.95 6.90498 10.38 

1072 16.000 10.4 4.521 16.000 0.65 10-4 4.521 
12226 I0S.75 70.6875 0.000 108-75 0.65 70.6875 0.000 
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5. Concluding Remarks 

In this paper, we constructed and analyzed inventory and investment in quality 

improvement policies under ROI maximization. Specifically, first, we showed how an 

ROI maximization problem is formulated. Next, the unique global optimal solution is 

determined by employing the primary criterion of ROI maximization and the secondary 

criterion of the prior order quantity minimization. 

In addition, we showed how the levels for the prior and posterior order quantities 

are reduced when it is optimal to invest additional money in quality improvement. 

Furthermore, we provided an alternative way of determining the unique global optimal 

solution based on the rates of change in the fraction of an order quantity meeting the 

quality requirements and the prior order quantity. 

Finally, under the assumption of a linear investment function, we first obtained the 

unique global optimal solution in closed-form. Next, we derived various interesting 

managerial insights with respect to the critical parameter of ^ where ^ represents the 

rate of change in the fraction of an order quantity meeting the quality requirements 

with respect to investment K. Specifically, it is easily verified that the optimal ROI is 

a decreasing function with respect to /?. Hence, the decision to invest, not to invest, or 

to cease to operate critically depends on the value of (3. 

There are several extensions that will further enhance the importance and relevance of 

our model. They include incoqjoration of more sophisticated features such as shortages, 

delivery lags, and stochastic demand rates, etc. From the perspective of investing in 

quality improvement, it would be of interest to study the allocation of the investment 
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in quality improvement. For example, how much should be invested in purchcising or 

leasing new equipment and how much should be invested in employees training and 

wages. 
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ROI for Problem X ROI for Problem Y 

R' R' R' 

PA = PB 

P2 PI= PA = PB P2 PI P2 PA PI 

a. P2 < PI — PA — PB b. P2 < PI < PA= PB C. P2< PA < PB < PI 

R- R' R-

V. ' ^ J ^ B  = P 2  

d. PA<P2<PB< PI e. PA <PB=P2< PI f. PA<PB<P2< PI 

Figure I The Optimal ROI vs. /? 
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CHAPTER 2. INVENTORY AND INVESTMENT 
IN SETUP OPERATIONS 

UNDER RETURN ON INVESTMENT MAXIMIZATION 

A paper prepared for submission to Computers and Operations Researcli 

Toshitsugu Otake and K. Jo Min 

Abstract 

In this paper, we construct and analyze inventory and investment in setup operations 

policies under return on investment (ROI) maximization. The key contributing features 

of this paper are the establishment of an ROI model and characterization of the unique 

global optimal solution when there exists an option to invest in setup operations. We also 

show how the inventory level is reduced when it is optimal to invest additional money 

in setup operations and derive the unique optimal solutions in closed-form when the 

setup cost is a rational or linear function of the level of investment. Various interesting 

managerial insights are provided. 
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1. Introduction 

In this paper, we construct and analyze inventory and investment in setup operations 

policies under return on investment (ROI) maximization for decision makers of inventory 

systems. ROI is a widely utilized economic performance measure dealing with finished 

goods inventories (see e.g., Schroeder and Krishnan 1976; Morse and Scheiner 1979; and 

Reece and Cool 1978). This paper is motivated by the lack of mathematical models 

with ROI as an economic performance criterion when the option of investing in setup 

operations exists. 

The primary contributions of this paper are: (1) Formulation of the ROI model and 

characterization of the unique optimal policies consisting of the order quantity and the 

level of investment in setup operations, (2) Characterization of inventory reduction when 

it is optimal to invest additional money in setup operations, and (3) Closed-form optimal 

policies and managerial insights when the setup cost is a rational or linear function of 

the level of investment. 

Traditionally, numerous papers have employed the profit maximization (or cost mini­

mization) as their objective in designing and analyzing inventory models (see e.g., Whitin 

1955; Smith 1958; Ladany and Sternlieb 1974; Hillier and Lieberman 1995). Meanwhile, 

Schroeder and Krishnan (1976) proposes an inventory model under an alternative opti­

mization criterion of ROI maximization. Also, Rosenberg (1991) compares and contrzists 

profit maximization vs. return on inventory investment with respect to logarithmic con­

cave demand functions. 

Thus far, we have reviewed the inventory literature on performance criteria. Let us 
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now proceed to review the setup investment models as follows. Recently, the superior­

ity of an inventory management system called Zero Inventory (often synonymous with 

Kanban and Just-in-Time; see e.g., Zangwill 1987) heis attracted a great deal of atten­

tion not only from industries but also from academia. The essential philosophy of Zero 

Inventory management system is that inventory results from operational inefficiency. 

Hence, the higher the level of inventory, the greater the operational inefficiency. From 

this perspective, it is well known that several Japanese and American producers strive 

to reduce the level of inventory as much as possible. In order to reduce the level of 

inventory, meanwhile, numerous experts in industries and academia find it essential to 

reduce the setup cost of production. 

In Porteus (1985), such efforts to reduce the setup cost are mathematically incorpo­

rated by introducing an investment cost function of reducing the setup cost to undis-

counted EOQ models. For the cases of logarithmic investment cost functions and power 

investment cost functions, his models demonstrate decreased operational costs when the 

setup cost is reduced. Porteus (I9S6a) extends Porteus (1985) to the case of discounted 

EOQ models. Billington (1987) formulates a model of which setup cost is a function 

of capital expenses and investigates the relations among holding, setup, and capital 

expenses. Hong, Xu, and Hayya (1993) proposes a dynamic lot-sizing model of which 

setup reduction and process quality are functions of capital expenditure. Kim, Hayya, 

and Hong (1992) investigates several classes of setup reduction functions by employing 

the economic production quantity model. 

We note that, in all these papers in setup investment models, the performance crite­
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rion has been the minimization of the cost or the maximization of the profit. Meanwhile, 

hitherto, there has been no analytical formulation of ROI with an option to invest in 

setup operations. Since one of the most frequently used criteria in inventory systems 

other than cost minimization/profit maximization is that of ROI maximization, a com­

prehensive and quantitative study of ROI maximization is highly desirable. (In deciding 

the optimal level of investment for setup operations, it would be inherently suboptimal 

for ROI maximizing decision makers to utilize the existing models constructed for cost-

minimizing/profit-maximizing decision makers). The comprehensive and quantitative 

study is also desirable because the existing literature qualitatively discusses the link 

between ROI and the inventory reduction (see e.g., Oakleaf 1972). 

The rest of this paper is organized as follows. We first formulate the ROI maxi­

mization model for inventory and investment in setup operations, and characterize the 

unique global optimal solution. Next, under the assumption of fairly general classes of 

setup cost functions, we show how the inventory level is reduced when it is optimal to 

invest additional money in setup operations. Then, for the specific cases of rational and 

linear setup cost functions, the optimal closed-form solutions are obtained and several 

interesting managerial insights are presented. Finally, summary and concluding remarks 

are made. 
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2. Model Formulation and Optimality Conditions 

2.1 Definitions and assumptions 

First, for a decision maker with a single product under ROI maximization, various 

notations and their definitions used in this paper are as follows: 

Q: the order quantity, 

C: the variable cost per unit. 

/: the inventory holding cost expressed as a fraction of the unit cost per unit time, which 

excludes the opportunity cost of funds tied up in inventory. 

K: the capital investment per unit time in setup operation. 

S{K): the setup cost as a function of A'. 

P: the selling price per unit. 

D: the sales quantity per unit time. 

Next, the following simplifying assumptions are made throughout this paper (which 

are often utilized in EOQ-type papers; e.g., Morse and Scheiner 1979). 

(1) There are no learning effects in setup or production. (2) Shortage is not allowed. (3) 

The sales quantity per unit time and selling price per unit are deterministic and constant 

over time. In addition, as in BilHngton (I9S7), we assume that the setup cost S{K) is a 

decreasing and differentiable function of A.'. Finally, we assume that, if the profit (hence 

ROI) is non-positive, then the decision maker stops operating (i.e., the firm ceases to 

operate). Therefore, we focus on the case of positive profit (hence ROI). 



www.manaraa.com

45 

2.2 Optimality conditions for Problem A 

In this paper, we consider two types of tlie ROI maximization problems of Problem 

A and Problem B. Under Problem A, ROI is maximized over Q given the current level of 

the capital investment, KP. i.e., the capital investment level is eissumed to be fixed. The 

total cost per unit time, TC, consists of costs of the setup cost, the variable cost, and 

the holding cost and the capital investment per unit time in setup operations (see e.g., 

Billington 1987). Mathematically, the total cost per unit time is expressed as follows: 

TC = ̂  + CD + ̂  + KF where SF = 5(A». 

Since the total revenue per unit time is the selling price per unit multiplied by the 

sales quantity per unit time (i.e., PD), the profit per unit time, 11, is obtained by 

subtracting the total cost per unit time from the revenue per unit time, i.e., 11 = 

P D - ^ - C D - ^ - K f -

The inventory has been widely viewed as a capital investment for profits (see Schroeder 

and Krishnan 1976; Morse and Scheiner 1979; Oakleaf 1972) and the capital investment 

in setup operations is also viewed as an investment. Hence, the average investment per 

unit time is given by ^ + Kp-

Since ROI is defined as the ratio of the profit per unit time over the average invest­

ment per unit time, ROI given A> as in Chen (1995) is obtained as follows: 

D  — ( P N  S P D  I C Q  C Q  ,  
RF = {PD CD /vf ) / (—+ /VF) (1) 

Since ROI is maximized over the order quantity, an equivalent model formulation (see 

Bazaraa. et al. 1993; Luenberger 19S4) for Problem A is given by 

Problem A: min — Rp (2) 
g>o 
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From the first order necessary condition (FONC), we obtain the following equation: 

QP = [CDSF + {2CDKFSFMF + C''D''SLF-^]L{CMF) (3) 

where MF = PD — CD — KF + IKF- It can be verified that QY is unique and satisfies 

the second order sufficient condition (SOSC). Hence, Q'p is the unique global optimal 

solution for Problem A and the corresponding ROI, R'p, is the global optimal ROI. 

2.3 Optimality conditions for Problem B 

For Problem B, the decision maker has an option to invest additional money in setup 

operations. Hence, under Problem B, ROI is maximized over Q as well as K for < 

A' < A'mar where A'min represents the airrent level of K, A'f, while A'mai represents 

the technologically feasible maximum investment. We will denote the corresponding 

setup costs S{Kmin) and 5(Amni) as S„i,n and S,nax^ respectively. .A.n equivalent model 

formulation (see Bazaraa et al. 1993; Luenberger 1984) for Problem B is given below. 

Problem B: ^mjn^. - R = + CD + ̂  + K - PD)l{^ + K) (4) 

subject to [\„iin — A' < 0 and A' — A'„,„r < 0. 

From the FONC when K = Kmin at optimality, we have 

Qmin = [CDSmin + (2C£)A'„„-„5„„-„ + C D^" SliX']/{C M,nin) (5) 

[(§^ +1)(%^ + /wn) + > 0 (6) 

where Mmin = PD — CD — Kmin + /Knin and n„un is the profit evaluated a.t Q = Qmin 

and K = Kmin- In this case, it is easily verified that the SOSC is satisfied. Let us 

denote this boundary local optimal solution by (Qmim ^'^min) the corresponding ROI 

by R'rain (= -^Cm))• 

Likewise, from the FONC when K = Knox at optimality, we have 
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Qma. = [CDSmar + (20 D M ,na.) (7) 

+ Ama.) + U,nar]/{^^ + < 0 (8) 
^max ^ — 

where M.mtxx = PD — CD- Kmax-'r IKmax and n„,ar is the profit evaluated at Q = Q^ax 

and K = Kmax- In this case, it is also easily verified that the SOSC is satisfied. Let 

us denote this boundary local optimal solution by {Q^ax^ ^max) 'he corresponding 

ROI by /Ca. (= 'C.J)-

Finally, from the FONC when Kint G (A'max) at optimality and the corre­

sponding setup cost S{Kint) = Sini, we have 

Q,„, = [CDSm + (2CDA-i,aSi„,A1i„, + (9) 

+ 1)(^^ + A-,„,) + + Km}' = 0 (10) 
Wint - -

where Mint = PD — CD — K^t + and !!,•„< is the profit evaluated at Q = 

and K = Kint- The corresponding SOSC is expressed below. 

> {SW (11) 

We will assume that, for tractable analysis, this SOSC is satisfied for an interior local 

optimal solution. Let us denote an interior local optimal solution by K'nt) and the 

corresponding ROI by (= /2((5*„p 

In summary, for Problem A, there always exists a unique global optimal solution 

because there is only one local optimal solution. On the other hand, for Problem B, 

further analysis is needed to detemiine the global optimal solution because there may 

be multiple interior and/or boundary local optimal solutions. This is the topic of the 

next section. 
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3. Optimality Analysis 

3.1 Derivation of global optimal solutions 

Under Problem A, it can be easily verified that there exists a unique global optimal 

solution. Under Problem B, however, the argument for the unique global optimal so­

lution is no longer .'straightforward. In this subsection, we will first address (possible) 

multiple global optimal solutions (In Subsection 3.3, we will address the determination 

of the unique global optimal solution). Let us first characterize interior local solutions 

when they exist. 

From equations (9) and (10) as in Chen (1995), the following relation can be obtained: 

Qi,u = (25.-,u - - C) (12) 

This is considered as a generalized expression of derived by Schroeder and Krishnan 

(see Schroeder and Krishnan 1976), which does not consider an option to invest addi­

tional money in setup operations. Substituting equation (12) into the objective function 

(4), we see that the optimal ROI is expressed as a function of K only, R{K). Since we 

have a function of a single variable, all interior optimal solutions can be obtained by 

numerical methods. Let us now suppose that there are n (n > 1) interior local optimal 

solutions designated by (Qint^ ^ = U We denote the corresponding ROIs by 

^int' ^ — 1, .. ., Tl. 

By considering the two (possible) local boundary optimal solutions characterized by 

conditions (5), (6), (7), and (S), we have a total of n + 2 possible local optimal (interior 
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and boundary) solutions. Hence, these local optimal solutions represent all possible 

candidates for a global optimal solution, which may not be unique. The existence of a 

global optimal solution can be shown via real analysis (see e.g., Apostol 1974 on page 

83). Let us denote a global optimal solution by {QQI KQ) and the corresponding ROI 

by R'Q. We will utilize the global optimal order quantity Q'Q in the following analysis of 

inventory reduction. 

3.2 Analysis of inventory reduction 

In this subsection, we will examine if the option to invest in setup operations results 

in inventory reduction. In order to show this, we will compare the global optimal order 

quantity for Problem A, Q'p, with that for Problem B, Q'Q. 

From the FONC of Problem A, we have 

C?> = ((25FD)/(/C + CftJ.)l°' (13) 

where R'p is the global optimal ROI at Q'p for Problem A. Similarly, from the FONC of 

Problem B, we have 

Q'c = [{2ShD)l[IC ^CR'a)r (14) 

where SQ is the global optimal setup cost at KQ and R'̂  is the global optimal ROI for 

Problem B. Based on (13) and (14), the relationship between the global optimal ROI 

and the inventory reduction is summarized in Proposition 1. 

Proposition 1. (Inventory Reduction) 

1) If ^ ^ben the level of inventor^' is reduced, and the reduction in the 

order quantity is given by Q'p — Q'^^. 
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2) If = FC^, then the level of inventory is reduced, and the reduction in the order 

quantity is (?> -

3) If then the level of inventory remains the same, and the reduction in 

the order quantity is zero. 

PROOF: Let us suppose that = R^in- Then. Q'q = = Q 'p so that the 

level of inventor}' remains the same. Let us now suppose that R^ — R^ for any given 

i. Then, we observe that 2SQD < 'ISPD since /vj", > AV- Also we observe that 

IC -tCR^ > IC + CRfr since R^ > Rp. Therefore. < Oy. i.e., the level of 

inventory is reduced. Likewise, let us suppose that Rq = R^ar- Then, we observe that 

'2SQD < 2SFD since > KP- Also we observe that IC -r CR^ > IC -rCRp- since 

R^ > Rf. Therefore. < Q'p-. i.e.. the level of inventory is reduced. • 

Hence, with the option to invest additional money in setup operations, the level of 

inventory will be reduced or remain the same. In particular, if the decision maker finds 

it optimal to invest additionail money in setup operations, the level of inventor^' will 

be always reduced. In the next subsection, employing an additional criterion based on 

Proposition I, we will characterized the uniqueness of the global optimal solution. 

3.3 Uniqueness of global optimal solution 

Thus far for Problem B. it is possible to have multiple global optimal solutions. In 

this subsection, we will employ an additional criterion based on Proposition 1 to induce 

a unique globed optimal solution. The additional criterion is: if the levels of ROI are 

the same, then the global optimal solution with the lowest level of order quantity will 
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be preferred. The rationale is that, given that the levels of finamcial performance are 

the same, the smallest inventory is the most preferable due to factors that are external 

to this model (e.g.. storzige f<icilities. space, risk of deterioration and obsoleteness, etc.). 

In our model formulation for ROI maiximization. given the multiple global optimal 

solutions with we can show that the smallest order quantity is associated with 

the largest capital investment as follows. Let us suppose that = f{^ where 

and are ROIs corresponding to KQ amd KQ . respectively, satisfying < 

KQ < K'Q < KMAS- Then, since 25^ D > 'ISQ D, where SQ and 5^* are the setup costs 

corresponding KQ and KQ .  respectively.  .Also.  IC -TCRQ = IC -TCRQ and QQ > QQ 

by equation (14). Hence, the unique global optimal ROI. RI/Q. is at K = K^ rather 

than R^ a.t K = KQ, We now summarize this hierarchical determination of the unique 

global optimal solution as follows: 

If there are more than one global optimal solutions under the ROI maximization as 

the primar>' criterion, then the global optimal solution with the largest capital investment 

will be the unique global optimal solution under the order quantity minimization as the 

secondar\' criterion. 

3.4 Further analysis of unique global optimad solution 

In this subsection, we provide an alternative way to determine the unique globed 

optimad solution by utilizing characteristics of local optimality. This method provides 

managerial insights and does not depend on the actual calculations of ROIs. From the 

FONC for Problem B. we have 
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R  =  { 2 S D ) I { C Q ^ ) - 1  (15) 

Let us first assume that there are local optimal solutions at A' = K^in — ^max-

i.e., there are two local optimal solutions and both of them are boundary local optimal 

solutions. We modify equation (15) in order to obtain the following equivalent conditions: 

-1 > (2S;„„0)/(C(3;^J - / 

"• (min,max) (16) 

where A5r • . = AOT = 9' = and 9* - = 
(mm,mas) ' ^'«(mtn,mar) ' *^mar ^min 

S* • " 

Let us denote inequality condition (16) by Cl. We note that and 

are the per unit setup cost at K = and K = respectively. We also note 

that and are the rates of change in the per unit setup cost and 

the order quantity due to the increase in the capital investment from K = to 

K = Kmax^ respectively. Hence, ROI at K = is greater than or equal to that at 

K = if and only if the rate of change in the per unit setup cost due to the increase 

in investment is less than or equal to that in the order quantity. 

Thus far, we have shown an alternative way to describe the relation between the 

two boundary local optimal solutions. Let us now assume that, in addition to the 

two boundary local optimal solutions, there is only one interior local optimal solution 

K'nt) with Then, we can derive the following equivalent relations; 

^mox — ^int ^ [int.max) (1^) 

^int ^ ^,iun ^ (^8) 
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whprp A 9* = AO' = A 9* = anrJ wnere i^J^int,mai:) 5;„, ' ^^{int,max) Q;„, ' ^'^(mm.mt) " 

^Qlmin,int) ~ ^"'4""'^'"'' denote the inequality conditions (17) and (18) by C2 

and C3, respectively. 

If there are multiple interior local optimal solutions, inequalities similar to (16), (17), 

and (18) can be employed to obtain the unique global optimal solution among the interior 

local optimal solutions only. Let us denote such a solution by /?/yvr-

Now, the unique global optimal solution can be determined as follows. If there 

exist all three types of local optimal solutions, i.e., (<3m,„, A''„„), {Q 'JNTI 

(Qmori ^'mor)i ^^st examine if C2 holds. (1) If C2 holds, then examine if Cl holds. If Cl 

holds, the unique global optimal solution is ((^man ^Cox) with RI ;q = H^ax- Otherwise, 

the unique global optimal solution is (2) If C2 does not hold, then examine 

if C3 holds. If C3 holds, then the unique global optimal solution is [Q 'INTI ̂ INT) 

R 'UQ = R 'tNT' Otherwise, the unique global optimal solution is RIJQ = 

If there exist two types or one type of local optimal solutions (e.g., (Qi^vTi 

{Q'maxif^max))i ^ Similar approach can be used to determine the unique global optimal 

solution. Therefore, we now have an alternative way to determine the unique global 

optimal solution, which will be utilized in the next section. 

4. Analysis under a Special Setup Cost Function 

So far, we have eissumed fairly general classes of setup cost functions. In this section, 

we show additional managerial insights by employing two special setup cost functions. 

Namely, a rational setup cost function and a linear setup cost function. 
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4.1 Analysis under a rational setup cost function 

Let us suppose that, in this subsection, the setup cost function is a rational function, 

S{FC) = ^ where 7 is a positive constant and represents the magnitude of the setup cost 

(see Ladany and Sternlieb 1974; Chen 1995). We note that an increase in 7 leads to the 

upward shift of the setup cost function. Hence, for a given level of capital Investment, 

the increase in 7 raises the setup cost. 

From conditions (5) and (6), the local optimal solution at l\ = A7„,-„ is characterized 

by 

=  [ ^ + ( w )  
m»n '^min 

~ (20) 

where mm mm > 0 and M'^,. = PD - CD — + IK'-. 
V 2 

Also, the local optimal solution at l\ = K'^i is, from conditions (9) and (10), 

<3Lh) = (127D(P - C))/(-9C7(1 -/) + %/£) (21) 

A'".,(7) = (-9C7(I - /) + \/f)/(4D(P - C)^) (22) 

where £  = 81C^7^(1 — I ) ^  +  2 A C D ^ f { P  —  C ) ^ .  We note that the interior local optimal 

solutioa given (21) and (22) is unique. 

Finally, by conditions (7) and (S), the local optimal solution at [\ = given 

by 

(23) 
'^max 

^maar ~ ̂ ^max (24) 

where ."mar^mar < Q and M' = PD — CD — K' + IK' — 'mar ' ̂  ^ ̂  '^^max ~ ' ̂^max' 

Let us now derive the procedure for the unique global optimal solution. When 
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there exist all three types of local optimal solutions, K^in)i {Q'int^ K'ni), and 

(Qmai) ̂ maar)> then from Subsection 3.4, 

A O -  _  A O *  =  ~ X 
^•^(tnf.mar) (tnt.mox) CjK' 

CQ ^ * 

where i"+^max)Kmax ^ Q Hence, the right hand side of equation (25) i 

negative. 

Likewise, 

IS 

A  9" — A O "  — ^)^C>in r. f P — C 2 A,'„( , 
(mm.rnr) [ P  —  C ) I \ '  P  8 2  —  C  K '  /  

I r^m \f\* 
where 62 = — —p ^ > 0 and the right hand side of equation (26) is negative. 

The negative values of (25) and (26) imply that, given the three types of the local optimal 

solutions, {Qmax^ ^^max) the unique global optimal solution. 

From similar analyses over two types and one type of local optimal solutions, we 

conclude that, if there exists the local optimal solution (Qmoi^ ^Car)^ then {Q^ax^ ^Ciar) 

is the unique global optimal solution with = R^^x- Otherwise, whenever there exists 

the local optimal solution then {Q'nt^ the unique global optimal 

solution with Rlc = If there does not exist (Q-„,, A';;,J, either, then IQiJ 

is the unique global optimal solution with 

This implies that, with the rational setup cost function S ( / \ ]  =  there is always 

only one global optimal solution under the ROI maximization criterion, i.e., there is no 

need for the order quantity minimization criterion as the secondary criterion. We will 

show that this is not the czise in Subsection 4.2 with the linear setup cost fimction. 

We note that, for any given set of values for parameters, the feasible set for Problem 
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A is a subset of the feasible set for Problem B. Hence, the unique global optimal ROI for 

Problem B, fiyc, is always bounded below by the unique global optimal ROI for Problem 

A, Rp. In addition, it can be verified that < 0 and < 0. We note that there 

are three different expressions for RlfQ according to the three cases of 

^inti ^max' 

We now will comprehensively analyze the optimal behavior of R, Q, and A' with 

respect to parameter 7. Let us first define the critical value of 7, 71. Mathematically, 

7i = max {7} subject to Ruoij) = Kunij) (27) 
7>0 

7i defines the maximum 7 value at which the unique global optimal R^Q is equal to 

R^IN' Likewise, we can define three additional critical values of 7, 72, JA, and JB-

Mathematically, 72 = min {7} subject to R'ucil) = ^max(7) (28) •>>0 

Ta € {7|/?F(7) = 0,7 > 0} (29) 

IB € {7l^ac(7) = 0,7 > 0} (30) 

It can be verified that 71, 72, 7^1, and 75 are either uniquely determined or non-existing. 

Let us first examine the case where all four critical values exist. Then, it can be shown 

that 7i < 72 and 7>i < 7b. It can also be shown that all possible relative positions of 

7i> 72j 7a» and 7s are characterized in the following six cases: 

If 7i = lAi then 'n = = JB < I2 (Case (a); see Figure I.a). 

If 7i > 7A) then 7a = 7b < 7i < 72 (Case (b); see Figure Lb). 

If 7i < 7a, then the following four cases may happen. 

7i < 7a < 7B < 72 (Case (c); see Figure l.c), 7i < 7a < 7B = 72 (Case (d); see 

Figure I.d), 71 < 7a < 72 < 7B (Case (e); see Figure l.e), and 7i < 72 < 7a < 7B (Case 
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(f); see Figure l.f). 

First, from Figure l.a and Figure Lb, if 7 < 7^1, then the decision maker will not 

invest additional money in setup operations. If 7 > 7/i, then the decision maker will 

cease to operate because the optimal ROI level is not positive. Hence, for Cases (a) and 

(b), it is never optimal to invest any additional money. 

Also, from Figure l.c and Figure l.d, if 7 <71, then the decision maker will not invest 

additional money in setup operations. If 71 < 7 < 7s, then the decision maker will invest 

additional money in setup operations where K = That is, when 7i < 7 < 75, 

K — K^ax optimal. If 7 > 7s, on the other hand, then the decision maker 

will cease to operate. Hence, for Cases (c) and (d), it is never optimal to invest at the 

maximum level of A,' = /v'mar-

Finally, from Figure L.e and Figure l.f. if 7 <71, then the decision maker will not 

invest additional money in setup operations. If 71 < 7 < 72, then the decision maker 

will invest additional money in setup operations where K = If 72 < 7 < 7s, then 

the decision maker will invest the maximum where K = If JB < 7, on the other 

hand, then the decision maker will cease to operate. 

In addition, for Cases (c), (d), (e), and (f), for 7a < 7 < 7s, ROI for Problem A is 

non-positive while ROI for Problem B is positive. Hence, by investing additional money 

in setup operations, the decision maker will operate with positive ROI (and not cease 

to operate). 

Moreover, as mentioned in .Subsection 3.2, if the decision maker finds it optimal to 

invest additional money in setup operations, the level of inventory is always reduced. 
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Hence, the unique global optimal order quantity for Problem B, QI ;QI is always bounded 

above by the unique global optimal order quantity for Problem A, Q'p. Also, it can be 

SO* DO' 
shown that > 0 and > 0. In addition, we observe that the capital investment 

for Problem B, KIJQ is bounded below by that for Problem A, Kp. Also, it can be shown 

that = 0 and > 0. 

Thus far, we have examined the case where all four critical values exist. We note that 

similar analyses can be done where some critical values do not exist. The subsequent 

analyses are simpler because of the absence of some critical values of 7. We now proceed 

to illustrate some of the features in the following numerical example. 

Example 1 

Let us suppose that C = $100, D = 25 per month, / = 0.1 per month, P = 

$150, Kmin = $50 per month, and A'mar = $480 per month. We note that these 

numerical values are identical to these in Chen (1995). However, the numerical example 

is substantially different here. Our emphasis is on parametric analysis of 7, which was 

NOT addressed at all in Chen (1995). Then, the four critical values of 71, 72, 7^1, and 7b 

are 934, 5310395, 144010, and 57S730, respectively. The corresponding Q'p, R'p, Ql/c 

and are sunuiiarized in Table 1 as follows: 

Table 1 Sensitivity analysis of change in 7. 

7 

Problem A Problem B 

7 Q'F R'p Qua ^UG 
934 1.12 7.33 1.12 50 7.33 

144010 120 0 25.4 340 0.23 
578730 459 -0.07 83.5 416 0 

5310395 2097 -0.1 597 480 -0.088 
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First, we recognize that this example is Case (c). Hence, eis 7 increases, ROIs for 

Problems A and B decrease. When 7 < 71, we observe that ROIs are the same while, 

when 7 > 7i, ROI for Problem B is strictly greater than ROI for Problem A. 

Also, it can be shown that, as 7 increases, the order quantities for Problem A and 

B incretise. It can be verified that, when 7 < 71, the order quantities are the same 

while, when 7 > 71, the order quantity for Problem A is strictly greater than that for 

Problem B. That is, if 7 > 71, then inventory is reduced when there is an option to 

invest additional investment in setup operations. 

Finally, it can be shown that, when 7 > 71, the capital investment level for Problem 

B increases as 7 increases. On the other hand, it can also be shown that, when 7 < 71, 

the capital investment level for Problem B remains the same as that for Problem A. i.e., 

no additional investment to reduce the setup cost is the optimal policy. 

From these observations, we summarize that when 7 is relatively small (hence the 

setup cost is relatively small), then no additional investment is the optimal policy. How­

ever, when 7 is relatively large (hence the setup cost is relatively large), then additional 

investment is the optimal policy, resulting in higher ROI and smaller inventory. 

4.2 Analysis under a linear setup cost function 

In this subsection, let us consider a linear setup cost function, S { K )  =  a  —  

where both a and (3 are positive constants. We note that a is the intercept and P is the 

slope of this linear function. We further note that K € [Ar„.,n, and /vmai < f-

This function is widely observed in the literature (see e.g., Billington I9S7: Kim, Hayya, 
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and Hong 1992; Chen 1995). It can be verified, by checking the second order necessary 

and sufficient conditions, that the local optimality will be achieved at K = Kmin and/or 

at K = Kmax' i-e., there is no interior local optimal solution. This result is consistent 

with the findings of Billington (1987). 

The actual expressions for the boundary local optimal solutions can be straightfor­

wardly obtained from conditions (5), (6), (7), and (8). Let us now derive the procedure 

for the unique global optimal solution. As mentioned before, since the local optimality 

is achieved at K = Kmin and/or at K = Kmax, the unique global optimal solution will 

be either at K = or at K = Hence, when there exist two types of local 

solutions, and /v,;„^), from Subsection 3.4, 

^^{min,max) (tutti,rnax) 

^  ( P - S , - C } i 2 a - 0 I Q , J  

( P  +  S r - C ) ( 2 a - a A Z . . J  
_ (F + Si-OjOg- /j/v-,J g - , .... 

^ - C K 2 a  - /?A7_)^ a - ^ 

global optimal solution depends on the sign of (31). If the sign of (31) is non-positive, 

then Hue — ^max- On the other hand, if the sign of (31) is positive, then 

We note that if the sign of (31) is zero, then The reason is, even though 

= Rmaxf secondary criterion of the order quantity minimization favors K = 

Kl^ax ^ there exists only one boundary local optimal solution, then it is the unique 

global optimal solution. 

We note that, as in Subsection 4.1, Rlr^ is always bounded below by Rp. In addition. 
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it can be verified that < 0 and < 0 while > 0 and > 0. In what 

follows, we show how a comprehensive analysis of the optimal behavior of R, Q, and K 

with respect to parameters a and 13 is done. Our approach here is similar to that in 

Subsection 4.1. Let us examine the parameters a first, followed by fi. 

First, we define three critical values of o, aj, a a, and Qg as follows: 

ai = min {q} subject to /?ycp(a) = (32) 
a>0Kmai 

€ {a|/2^(a) = 0, a > pKmax} (33) 

QB 6 {Q:|Raa(Q^) = 0,a > pKmax) (34) 

Likewise, we define three critical values of (3, fix, (3a, and (3b as follows: 

(3x = maoc {/?} subject to R'uai^) = R'F[f3) (35) 
'Vmo* 

13A € = 0,0 < /? < (36) 

/^S 6 {m'ucX0) = 0,0 < /? < -^} (37) 
max 

Let us first assume that all these critical values of a and 0 exist. Then, it can be 

shown that all possible relative positions of fti, and ag are as follows: 

If ai = Oa, then aj = = os (Case (a); see Figure 2.a). 

If ai > O/i, then oa < as < ai (Case (b); see Figure 2.b). 

If ai <aA, then Q j < = as (Case (c); see Figure 2.c). 

Next, it can be shown that all possible relative positions of /?i, and 0b are as 

follows: 

If = 0A, then 01= 0A= 0B (Case (d); see Figure 2.d). 

If /?i > /?x, then Pa = 0b < 0i (Case (e); see Figure 2.e). 
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If I3i < then < PB < PA (Case (f); see Figure 2.f). 

As we observe from Figure 2.a to Figure 2.f, analysis similar to the one in Subsection 

4.1 can be done,  e .g. ,  for  Cases (b)  and (f) ,  for  < A < AS and PB < P ̂  PA, 

respectively, ROI for Problem A is non-positive while ROI for Problem B is positive. 

Hence, by investing additional money in setup operations, the decision maker will operate 

with positive ROI (and not cease to operate). 

The key observations for the linear function case that are different from those for the 

rational function case are as follows: 

(1) For Cases (c) and (e), at at and Bi. respectively, even though = R'p, the 

decision maker will choose RI;Q because of the secondary criterion of the order quantity 

minimization. That is, QI;Q < Q'p and = Kmax > = A'mm even if R'[;Q = R}. at 

ai and Pi (Recall: in the rational function ceise, the secondary criterion is never needed). 

(2) For Cases (a), (b), (d), and (f), we observe that the decision maker will either 

invest the maximum level of capital investment or cease to operate. In the rational 

function case, from Figure l.a to Figure l.f, we observe that such case can never happen. 

We note that, for the linear function case, investing additional money that is less than 

the maiximum is never optimal. Therefore, the magnitude of change in K due to changes 

in parameter values (a and P) may be quite drastic relative to the rational function case 

(the parameter value here is 7). 

Thus far, we have examined the case where all these critical values exist. We note 

that similar analyses can be done where some critical values do not exist. The subsequent 

analyses are simpler because of the absence of some critical values of a and/or /?. 
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5. Concluding Remarks 

In this paper, we constructed and analyzed inventory policies and investment in 

setup operations policies under ROI maximization. Specifically, we showed how an 

ROI maximization problem is formulated and the unique global optimal solution is 

determined. Furthermore, we showed how the inventory level is reduced when it is 

optimal to invest additional money in setup operations. Also, we provided an alternative 

way of determining the unique global optimal solution bzised on the rates of change in 

the per unit setup cost and the order quantity. Finally, under the specific assumptions 

of the rational and linear setup cost functions, we obtained the unique global optimal 

solutions in closed-form and derived various interesting managerial insights with respect 

to the critical parameters of a, and 7. 

There are several extensions that will further enhance the importance and relevance of 

our model. They include incorporation of more sophisticated features such as shortages, 

delivery lags, and stocheistic demand rates, etc. From the perspective of investing in 

setup operations, it would be of interest to study the allocation of the investment in 

setup operations. For example, how much should be invested in purchzising or leasing 

new equipment and how much should be invested in employees training and wages. 

Finally, it would be of interest to study the effects of investment in setup operations 

with respect to process quality and capacity (see e.g., Porteus 1986b; Spence and Porteus 

1987). 
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ROI for Problem A ROI for Problem B 

72 7 

7I = 7/1 = 

LA = 7FL 

R' 

-^7 
7I 7-4 72 

a. 7I = 7>i = 7B < 72 b. '^A =1B <1\ < 72 C. 7I < 7A < 7B < 72 

7I 7A 7I 7A 72 
7 

7I 72 7A 
^7 A ^ 

d. 7I < 7A < 7B = 72 E- 7I < 7A < 72 < 7FL f. 7I < 72 < 7A < 7B 

Figure 1 The Optimal ROI vs. 7 
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ROI for Problem A ROI for Problem B 
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e. 0A=0B < 01 01 <08 < 0A 

Figure 2 The Optimal ROI vs. a and 0 
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CHAPTER 3. INVENTORY AND CAPITAL 
INVESTMENT ALLOCATION POLICIES 

UNDER RETURN ON INVESTMENT MAXIMIZATION 

A paper prepared for submission to Engineering Economist 

Toshitsugu Otal<e and K. Jo Min 

Abstract 

In this paper, we construct and analyze inventory and capital investment allocation 

policies under return on investment (ROI) maximization. Our model is constructed for 

a decision maker of a single product with a budget constraint iu capital investment. 

Investment itself can be allocated for reduction of setup cost and/or improvement in 

quality which is measured by the fraction of non-defective items in a production batch. 

Interesting managerial insight and a numerical example are provided. 

1. Introduction 

In this paper, we construct and analyze inventory and capital investment allocation 

policies under return on investment (ROI) maximization. Our model is constructed for 

a decision maker of a single product with a budget constraint in capital investment. 
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Investment itself can be allocated for reduction of setup cost and/or improvement in 

quality which is measured by the fraction of non-defective items in a production batch. 

The decision maker is assumed to determine the production batch size (i.e., the order 

quantity). This order quantity is then inspected, and only the non-defective items will 

be stored as inventory while the defective items will be discarded. 

The key contributing features of this paper are the establishment of an ROI model 

with the capital budget constraint. Even though ROI is a widely utilized performance 

measure in finance and economics (see e.g., Schroeder and Krishnan 1976), the current 

literature on inventory and investment policies mainly focuses on cost (see e.g., Hong 

and Hayya 1995). Hence, it is highly desirable to examine such policies under ROI 

maximization. This is especially true for finished products (see e.g., Morse and Scheiner 

1979). For such products, we also derive managerial insights such as how the inventory 

level is reduced when it is optimal to invest additional money in setup cost reduction 

and/or quality improvement. 

Let us now proceed to review the setup investment models as follows. In Porteus 

(1985), such efforts to reduce setup cost are mathematically incorporated by introducing 

an investment cost function of reducing setup cost to undiscounted EOQ models. Porteus 

(1986) extends Porteus (1985) to the case of discounted EOQ models. By employing the 

economic production quantity model, Kim, Hayya, and Hong (1992) investigates several 

classes of setup reduction functions. Leschke and Weiss (1997) analyze investment pri­

orities for setup-reduction programs in a multi-product system. Also, Leschke (1997a) 

describes the setup-reduction process and Leschke (1997b) provides some guidance of 
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priority of investment for managers. 

Next, the quality issues for a product in an inventory system have been extensively 

studied. For example, Lee and Rosenblatt (1985) assume imperfect quality of product 

and examine optimal inspection and ordering policies for products. On the other hand, 

Cheng (1991) investigates an Economic Production Quantity (EPQ) model with process 

capability and quality assurance considerations. Since numerous modern production sys­

tems emphasize reduction in inventory and improvement in quality, the relation between 

the quality and inventory reduction is critical for both practitioners and academia. For 

example, Voss (1987) argues that .Just-In-Time production systems lead to increased 

quality and reduced inventory. In addition, Kekre and Mukhopadhyay (1992) show a 

negative relationship between inventory and quality by using econometric models. 

Moreover, recently, joint investment in setup reduction and quality improvement 

have been analyzed. Hong, Xu, and Hayya (1993) proposes a dynamic lot-sizing model 

of which setup reduction and process quality are functions of capital expenditure. Fur­

thermore, Hong and Hayya (1995) examined the trade-offs between investment in setup 

reduction and investment in quality improvement under cost minimization. 

Thus far, we have discussed the literature on setup cost and quality improvement. 

Let us now proceed with ROI and capital investment in the literature. ROI is one of 

the most widely used economic and financial performance measure dealing with finished 

goods inventories as mentioned before (see e.g., Schroeder and Krishnan 1976; Morse 

and Scheiner 1979; Reece and Cool 1978). Traditionally, there are numerous papers 

employing the profit maximization or cost minimization as their objective in designing 
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and analyzing inventory models (see e.g., Whitin 1955; Smith 1958; Ladany and Sternlieb 

1974; Hillier and Lieberman 1995). On the other hand, Schroeder and Krishnan (1976) 

assume an ROI maximization inventory model. Also, by employing logarithmic concave 

demand functions, Rosenberg (1991) compares and contrasts profit maximization vs. 

return on inventory investment. 

This paper is motivated by the lack of inventory models with the capital budget con­

straint under ROI maximization when there exists an option to invest in setup operations 

and quality improvement. Since one of the most widely used economic and financial per­

formance criteria in inventory systems other than profit maximization/cost minimization 

is ROI maximization, a comprehensive and quantitative study of ROI maximization is 

highly desirable. The comprehensive and quantitative study is also desirable because 

the existing literature qualitatively discusses the link between ROI and the inventory 

reduction (see e.g., Oakleaf 1972). 

The remainder of this paper is organized as follows. We first formulate the ROI max­

imization model for inventory and investment in setup and quality operations. Next, 

under the assumption of fairly general class of investment function, we show how the 

inventory level is reduced when it is optimal to invest additional money in setup opera­

tions and quality improvement. Moreover, for the specific case of a rational setup cost 

function with a linear quality improvement function, we illustrate a numerical exam­

ple to show sensitivity analysis of unit variable cost. Finally, summary and concluding 

remarks are made. 
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2. Model Formulation 

2.1 Definitions and assumptions 

First of all, for a decision maker with a single product, various notations and defini­

tions used throughout this paper are as follows: 

Q: the order quantity size prior to inspection. 

C: the variable cost per unit. 

/: the inventory holding cost expressed as a fraction of the unit cost per unit time, which 

excludes the opportunity cost of funds tied up in inventory. 

A',: the capital Investment per unit time in setup operation. 

S(A'j): the setup cost as a function of K,. 

Krt the capital investment per unit time in quality improvement. 

r{Kr): quality level; the fraction of an order quantity meeting the quality requirements, 

which is a function of AV. 

P: the selling price per unit. 

D: the sales quantity per unit time. 

Given these notations, we assume that a decision maker determine the order quantity, 

Q. Also, given the quality level, r, Qr units of the order quantity will meet the quality 

requirements and they will be stored as inventory (i.e., Q is the prior order quantity 

while Qr is the posterior order quantity). The remaining defective units, Q{1 — r), are 

assumed to be discarded without any cost/value to the decision maker. The Qr units 

meeting the quality requirements will be sold to customers at P per unit. 
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In addition, the following assumptions, utilized in EOQ-type papers (see Morse and 

Scheiner 1979), are considered in this paper: 

(1) Shortage is not allowed. 

(2) The sales quantity per unit time and selling price per unit are deterministic and 

constant over time. 

(3) the replenishment rate is infinite. 

Furthermore, zs in Billington (1987), we assume that the setup cost S{Ks) is a 

decreasing and differentiable function of A',. On the other hand, the fraction of an 

order quantity meeting the quality requirements r{Kr) is an increasing function and 

differentiable function of /vV. Finally, we assume that, if the profit (hence ROI) is 

non-positive, then the decision maker stops operating (i.e., the firm ceases to operate). 

Therefore, we focus on the case of positive profit (hence ROI). In this paper, we consider 

two types of problems under a return on investment maximization model as described 

in next subsections. 

2.2 ROI maximization model 

We consider two types of the ROI maximization problem as Problem A and Problem 

B. Under Problem A, ROI is maximized over Q given the current level of the investment 

in setup and quality operations, and AV^, respectively. The inventory ha^ been 

widely viewed as a capital investment for profits (see Schroeder and Krishnan 1976; 

Morse and Scheiner 1979; Oakleaf 1972) and the capital investments in setup operations 

and quality improvement are also viewed as an investment. Hence, the average invest­
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ment per unit time is given by + A',^ + Krj. Since ROI is expressed cis the ratio of 

the profit per unit time over the average investment per unit time, ROI, given and 

Kfji is obtained as follows: 

fl/ = (''O - ̂  ^ + A'„ + A'„) (1) 

where 5/ = S[K3j) and rj = r{}\rf). 

Since ROI is maximized over the order quantity, an equivalent model formulation 

(see Luenberger 1984) for Problem A is given by 

Problem A: min — Rf (2) 
Q 

From the first order necessary condition (FONC; i.e., we obtain the following 

equation: 

Q} = [CDSjVf + i2CD{K,^ + Krr)SjrfMf + C'D'Sji jmCrfM f) (3) 

where Mf = PDrj — CD — + Krf]rf + + -'v, )''/• It can be verified that 

Q'f is unique and satisfies the second order sufficient condition (SOSC). Hence, Qj is 

the unique global optimal solution for Problem A and the corresponding ROI, R'j, is the 

global optimal ROI. 

Now, under Problem B. we assume that the decision maker has an option to invest 

additional money in setup cost reduction, quality improvement, or both. This implies 

that the levels of investment in setup and quality operations are not fixed at the initial 

levels for Problem A. Hence, ROI for Problem B is expressed as follows: 

F l - ( P C  l C Q r { l Q  
2 5 + A, + A,) (4) 

Let us denote the current level of investment in setup operation by and the 

current level of investment in quality operation by Let us also denote the tech­
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nological maximum investment in setup operation by /v,„„ and the technological max­

imum investment in quality operation by /vrm« more investment is not effective 

because the technological upper limit has already been reached). Hence, the decision 

variables are 6 where and Kr € Kr„a.] where 

The current expenditure for both setup operation and quality operation is denoted 

by Kjnin = ^sm,n + On the Other hand, we assume that the decision maker has a 

capital investment budget of Kmax < t'^max)' Therefore, the budget constraint is 

given by A'mm < A', + Kr < h'max- Hence, an equivalent model formulation for Problem 

B is given below. 

Problem B: min — R (5) 
Q,h'.,Kr 

subject to 

<0 (6) 

A; - A;̂ „ < 0 (7) 

AV,„.„ - Kr < 0 (8) 

A'r-A'._<0 (9) 

A', + A; - A'„.„^ < 0 (10) 

The corresponding Lagrangian function, £, is given by £ = —R + — Ks) + 

fiiiKs — Ks„^^) H-/i3(A'r^,„ — Kr) +fi4{Kr - Kr„^) + fisiKs + Kr — K^ax)- From this 

function, the corresponding FONCs are: 
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n 
d Q ~  

(11) 

d C  , 
dK, ~ 

(12) 

dl<r " 
(13) 

(14) 

fl2{I<s - = 0 (15) 

- Kr) = 0 (16) 

^4(/C-/\r„„) =0 (17) 

^'5(As "t" Ar A,nat) — 0 (18) 

/'l > 0 (19) 

/i2 > 0 (20) 

/'3 > 0 (21) 

/i4 > 0 (22) 

Ms > 0 (23) 

A;„.„ - A'. < 0 (24) 

As ~ ̂ '^Smax ^ 0 (25) 

Arm,„ ~ Ar < 0 (26) 

A'. - AV„„ < 0 (27) 

A', -t- A'r - Amar < 0 (28) 

We note that the theoretical maximum number of cases, based on bounding/nonbounding 
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constraints, is 2® = 32. However, some cases are not feasible (e.g., 

Kr = and K, + K it can be verified tliat there are 13 cases that 

can be optimal. 

Now, from |^, and we have the following second derivatives: 

d^c 

dQ^ 

d^c 

drq 

2SD 

Q'r 
CQR 

+ K, + Kr 

S"D 

Qr 
CQR 

+ A', + Kr 

2SDr' SDr" CQr"{IR) 
d'^C, _ Qr^ Qr^ 2 

aA7 

d^C 

CQR 

2 
-S'D 

Qh-

+ A', + A; 

dQdK, 

d'^C g2j.2 

dQdk'r 

d^C 

CQR 
+ a; + Kr 

SDv' Cv'[l+R) 
.1 

CQR 
+ A, + Ar 

dK.dKr 

-S'D 

Qr' 
CQR 

+ A', + Kr 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

From (29), (30), (31), (32), (33), and (34), the Hessian matrix of C, H, is given by 

&'C 
dQ' 

a'^c 
wj&K: 

d^c 

d'^c 

S'C 

d'^C 

d'^C 
dQdKr 

d'^C 
3K,bKr 

d'^L 
Wi 

(35) 
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Throughout the rest of this paper, we will assume that the second order necessary 

conditions are satisfied unless otherwise specified (i.e., all principal minors of % are 

positive). In next section, we analyze how inventory is reduced when there is an option 

to invest additional money in setup cost reduction and quality improvement based on 

Kuhn-Tucker conditions and the second order sufficient conditions. 

3. Analysis under General Functions 

3.1 Reduction in prior order quantity 

Under Problem A, there exists a unique global optimal solution. However, under 

Problem B, when there may exist multiple local optimal solutions, we cannot argue 

for uniqueness of global optimal solutions. Let us denote a global optimal solution for 

Problem B by {QQ, KQ), and the corresponding ROI by R'Q. We will utilize the global 

optimal order quantity Q'Q in the following inventory reduction analysis. 

In this subsection, we will examine if the option to invest in setup operations and/or 

quality improvement leads to reduction in the prior order quantity. In order to show 

this, we will compare the global optimal prior order quantity for Problem A, with 

that for Problem B, QQ. From the FONC for both Problem A and Problem B, we can 

easily see the following Proposition 1: 

Proposition 1. (Reduction in Prior Order Quantity) 

1) If RQ is obtained when — KS^.^ and K' = then the reduction in the prior 

order quantity is zero. 

2) Otherwise, the reduction in the prior order quantity is Qj — QQ. 
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We note that the proof is similar to that in Proposition 1 of Chapter 1. 

Hence, if the decision maker finds it optimal to invest additional money in setup cost 

reduction and/or quality improvement, the prior order quantity will be always reduced 

under the ROI maximization model. 

3.2 Reduction in inventory 

In this subsection, we will further analyze if the option to invest in setup operations 

and quality improvement leads to reduction in the posterior order quantity. Reduction 

in the posterior order quantity leads to reduction in inventory since the level of inventory 

is based on the level of the posterior order quantity. Similar to Subsection 3.1, from the 

FONC for both Problem A and Problem B, we can easily see the following Proposition 

2: 

Proposition 2. (Reduction in Inventory) 

1) If RQ is obtained when Kl = and K' > ^he reduction in inventory 

is zero. 

2) If RQ is obtained when and K' > , then the reduction in the prior 

order quantity is Q'frj — QQVQ, 

We note that the proof is similar to that in Proposition 1 of Chapter I. 

We note that if we invest additional money in setup cost reduction at optimality, 

the level of inventory will be reduced. However, even if we invest additional money in 

quality improvement at optimality, the level of inventory may not be reduced. 
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3.3 Uniqueness of global optimal solutions 

In this subsection, we consider uniqueness of global optimal solutions. That is, for 

Problem B, since it is possible to have multiple global optimal solutions, we will apply 

for an additional criterion to induce a unique global optimal solution. The additional 

criterion is: if the levels of ROI are the same, then the global optimal solution with 

the smallest inventory, which is similar to the smallest posterior order quantity, will be 

preferred because of factors that are external to this model (e.g., storage facilities, space, 

risk of deterioration and obsoleteness, etc). Furthermore, if both the levels of ROI and 

the smallest levels of posterior order quantity are the same, then the smallest prior order 

quantity is the most preferable due to factors that are external to this model such as 

inspection resource requirements (e.g., less inspection equipment, facility, and/or space 

are required for smaller prior order quantity). 

It is easily verified that, given selected multiple global optimal solutions with RQ, we 

can show that the lowest inventory is associated with the largest capital investment in 

setup operation. In addition, the lowest prior order quantity is associated with the largest 

capital investment in quality operation. Hence, if there are more than one global optimal 

solutions under the ROI maximization as the primary criterion, then the global optimal 

solution with the largest capital investment in setup operation will be the unique global 

optimal solution under inventory minimization as the secondary criterion. Moreover, 

if there are more than one global optimal solutions under the ROI maximization as 

the primary criterion with the largest capital investment in setup operation, then the 

global optimal solution with the largest capital investment in quality operation will be 
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the unique global optimal solution under the prior order quantity minimization as the 

tertiary criterion. In the next section, we provide an illustrative example. 

4. Numerical Analysis 

Thus far, we constructed ROI maximization problem, analyzed how inventory is 

reduced when there is an option to invest additional money in setup cost reduction and 

quality improvement, and examined how to determine the unique global optimal solution 

if there are multiple optimal solutions. In this section, we employ a rational setup cost 

function, 5(/v,) = where 7 are positive constant, and a linear quality improvement 

function, r(A'r) = 5Kri where 5 is positive constant. These functions are widely used in 

the literature (see e.g., Billington 1987; Kim, Hayya, and Hong 1992). 

Now, let us suppose that C = $100, D = 25 per month, / = 0.1 per month, 

P = $500, Kmin = $200 per month, Kmax = $500 per month, Ksm,n — ^^50 per month, 

^^4mox = ̂ 5400 per month, = $150 per month, = ̂ ^500 per month, 7 = 15000, 

and 5 = 0.002. Since 7 = 15000, S{KS) = ™ and ^ < 0 over A', 6 [50,400]. 

Similarly, since 5 = 0.002, r{KR) = 0.002^^ and > 0 over AV G [150,500]. 

This problem is solved by SAS/IML package (see SAS institute Inc. 1995). First, 

when initial levels of investment in setup operations and quality improvement are A',^ = 

^Jmm = ̂ 0 and Kri = AV^.n = 150, then the optimal solution under ROI maximization 

solved by SAS is Qy = 17.36 and the corresponding unique global optimal ROI is 5.4312. 

When there is an option to invest additional money in setup operations and/or quality 

improvement, the optimal solutions obtained by SAS are Q' = 3.83, A'* = 109.66, 



www.manaraa.com

82 

Table 1 Sensitivity analysis for C. 

Unit Variable Cost Qua Km Km ^UG 
100 3.831 109.66 307.12 12.252 
102 3.737 110.91 312.58 12.049 
104 3.646 112.16 318.03 11.852 
106 3.560 113.39 323.48 11.663 
108 3.477 114.61 328.94 11.479 

and A'* = 307.12, and the corresponding unique global optimal ROI is 12.2524. Since 

~ 416.78 < Kmax = 500, the capital budget constraint is also satisfied in 

this case. We note that when we invest additional money in both setup cost reduction 

and quality improvement, the order quantity is reduced and ROI increases. 

It is interesting to investigate some sensitivity analysis, especially unit variable cost, 

which is summarized in Table 1. It is interesting to note that when variable unit cost 

increases, the investments in both setup operations and quality improvement increase, 

but the order quantity and the level of ROI decreases. 

5. Concluding Remarks 

In tliis paper, we constructed and analyzed inventory and capital investment allo­

cation policies under return on investment (ROI) maximization. Our model was con­

structed for a decision maker of a single product with a budget constraint in capital 

investment. First, we showed how to formulate ROI maximization problems. Under 

Problem A, a decision maker of an inventory system with a single product does not have 

an option to invest additional money in setup cost reduction and/or quality improve­

ment. On the other hand, under Problem B, a decision maker has an option to invest 
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additional money in setup cost reduction and/or quality improvement. 

Moreover, we showed how the levels for the prior and posterior order quantities are 

reduced when it is optimal to invest additional money in setup cost reduction and/or 

quality improvement. In addition, the unique global optimal solution is determined 

by employing the primary criterion of ROI maximization, the secondary criterion of 

the posterior order quantity minimization (i.e., inventory reduction), and the tertiary 

criterion of the prior order quantity minimization. 

Furthermore, for the specific case of a rational setup cost function with a linear 

quality improvement function, we illustrated a numerical example to show sensitivity 

analysis of unit variable cost. 

There are several extensions that will further enhance the importance and relevance 

of our model. For example, in our model, we assumed a single product. If we consider 

several products that have economic relations (i.e., substitutes and complements; see 

Chapter 5 and Chapter 6), the formulation and analyses must be adjusted accordingly 

(e.g., how to allocate capital investments for substitute product. Also, if we relax the 

assumption of zero cost/value of defective items, it would be of interest to analyze various 

scenarios such as rework and/or salvage value of the defective items. 
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CHAPTER 4. INVENTORY AND INVESTMENT 
IN SETUP OPERATIONS 

UNDER PROFIT AND ROI MAXIMIZATION 

A paper published in Proceedings of the Seventh 
Industrial Engineering Research Conference ' 

Toshitsugu Otake and K. Jo Min 

Abstract 

We investigate inventory and investment in setup operations policies under a profit 

maximization model and a return on investment (ROI) maximization model. We exam­

ine the optimality conditions for both models and study how inventory is reduced when 

it is optimal to invest additional money in setup operations. Furthermore, we compare 

and contrast the inventory reduction between the profit model and the ROI model. We 

also examine the unique global optimal solutions in closed-form when the setup cost is 

a rational or linear function of the level of investment. Finally, we illustrate various 

interesting observations on our models via numerical examples. 

Reprinted with permission of Proceedings of the Seventh 
Industrial Engineering Research Conference, 1998, track/saO 1/toshiota.pdf, pp. 1-8. 
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Economic Order Quantity, Inventory Reduction, Profit, ROI, and Setup Operations. 

1. Introduction 

In this paper, we investigate inventory and investment in setup operations policies 

under profit maximization and return on investment (ROI) maximization for a decision 

maker with single product of inventory systems. 

In the literature of Inventory control, numerous papers have employed the profit 

maximization (or cost minimization) as their objective in designing and analyzing in­

ventory models (see e.g., Whitin 1955; .Smith 1958; Ladany and Sternlieb 1974; Hillier 

and Lieberman 1995). ROI is also a widely utilized economic and finance performance 

measure dealing with finished goods inventories (see e.g., Schroeder and Krishnan 1976; 

Morse and Scheiner 1979; Reece and Cool 1978). 

Thus far, the inventory literature on performance criteria have been reviewed. Let us 

now review investment in setup operations. Porteus (1985) pointed out that Japanese 

devoted to decreaising setup cost in their manufacturing processes and he provided an 

undiscounted EOQ model. Furthermore, Porteus (1986) extended Porteus (1985) to the 

case of discounted EOQ model. Billington (1987) formulates a model of which setup 

cost is a function of capital expenses and investigates the relations among holding, setup, 

and capital expenses. Hong, Xu, and Hayya (1993) proposes a dynamic lot-sizing model 

of which setup reduction and process quality are functions of capital expenditure. Kim, 

Hayya, and Hong (1992) investigates several classes of setup reduction fimctions by 
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employing the economic production quantity model. 

The rest of this paper is organized as follows: we first formulate a profit maximiza­

tion model and an ROI maximization model. Then, we examine the characteristics of 

solutions under profit maximization and ROI maximization. Moreover, by employing 

rational and linear setup cost functions, we obtain the unique global optimal solutions 

in closed-form. Also several interesting managerial insights are provided. Finally, con­

cluding remarks are presented. 

2. Optimality Conditions 

2.1 Definitions and assumptions 

First of all, for a decision maker with a single product, various notations and defini­

tions used throughout this paper are as follows: 

Q: the order quantity. 

C: the variable cost per unit. 

I: the inventory holding cost expressed as a fraction of the unit cost per unit time, which 

includes the opportunity cost of funds tied up in inventory, 

i: the inventory holding cost expressed as a fraction of the unit cost per unit time, which 

excludes the opportunity cost of funds tied up in inventory. 

iv: the capital investment per unit time in setup operation. 

S{K)i the setup cost as a function of A'. 

P-. the selling price per unit. 

D: the sales quantity per unit time. 
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In euiditioD, we utilize assumptions of EOQ-type papers such as no shortage and no 

delivery lag (see Morse and Scheiner 1979), 

2.2 Profit maximization model 

For the profit maximization model, we consider two types of the profit maximization 

problem as Problem A and Problem B. Under Problem A, profit is maximized over Q 

given the current level of the investment in equipment and training, Kp, The total cost 

per unit time, TC, consists of costs of the setup cost, the variable cost, and the holding 

cost and the capital investment per unit time in setup operations (see e.g., Billington 

1987). Hence, mathematically, TC = -tCD + + Kp where SF = S{Kp). 

Since the total revenue per unit time is the selling price per unit multiplied by the 

sales quantity per unit time (i.e.. PD), the profit per unit time, IT, is obtained by 

subtracting the total cost per unit time from the revenue per unit time. Since profit 

is meiximized over the order quantity, an equivalent model formulation (see Luenberger 

1984) as in Chen (1995) for Problem A is given by 

From the first order necessary condition (FONC). we obtain the following optimal solu­

tion for Problem .A.: 

Problem A: nun  - n^  =  -PD- r^ - rCD- r^ - r  A> (1)  

(2) 
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Since the second order sufficient condition is satisfied at optimality, is the unique 

global solution for Problem A and the corresponding profit, 11^, is the global optimal 

profit. 

On the other hand, for Problem B, the decision maker has an option to invest ad­

ditional money in setup operations. Hence, under Problem B, n is maximized over Q 

as well as K for A'mm < A' < A'mox where /vmm represents the current level of K, Kp, 
ir 

while Kmax represents the technologically feasible maximum investment. We will denote 

the corresponding setup costs S{Kmin) and S{Kmax) as 5mm and Smax, respectively. 

Under Problem B, there are three possible cases to be considered. Optimal solutions for 

A ~ A = and K = ^ are Qflmox' ^n,m» 

respectively. Similarly, optimal objective function value for A" = Kmin, K' = Kmax, 

and K' = are expressed as and respectively. We will assume 

that the Second Order Sufficient Conditions (SOSC) are satisfied. Especially, for an 

interior local optimal solution, the corresponding SOSC is expressed by 

Problem B: min — IT = ~ P D  +  
Q. K* 

(3)  

subject to Kmin — /v' < 0 and K — Kmax < 0. 

(4) 
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2.3 ROI maximization model 

Similar to the previous subsection, we consider two types of the ROI maximization 

problem as Problem C and Problem D. Under Problem C, ROI is maximized over Q given 

the current level of the investment in equipment and training, Kp. The inventory has 

been widely viewed as a capital investment for profits (see Schroeder and Krishnan 1976; 

Morse and Scheiner 1979; Oakleaf 1972) and the capital investment in setup operations 

is also viewed as an investment. Hence, the average investment per unit time is given by 

^ + Kf. Since ROI is expressed as the ratio of the profit per unit time over the average 

investment per unit time, ROI given Kp as in Chen (1995) is obtained as follows: 

RF = [ P D  C D  Af)/(— + h p )  (o) 

Since ROI is maximized over the order quantity, an equivalent model formulation (see 

Luenberger 1984) for Problem C is given by 

Problem C: min — Rp (6) 
Q 

From the first order necessary condition (FONC), we obtain the following equation: 

= [CDSp + {2CDKpSpMp + C'D'SpmCMp) (7) 

where Aip = PD — CD — Kp -^-iKp. It can be verified that is unique and satisfies 

the second order sufBcient condition (SOSC). Hence, is the unique global optimal 
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solution for Problem A and the corresponding ROI, R'p, is the global optimal ROI. 

Now, under Problem D, ROI is maximized over Q as well as K for Kmin K < Kmax-

An equivalent model formulation for Problem D is given below. 

Problem D: min - R = {̂ 4̂̂  + CD+ K - PD)/{̂  + K) (8) 
Q. A' y I I 

subject to Kmin — A' < 0 and K — Kmax < 0. 

Under Problem D, there are three possible cases to be considered. Optimal solutions 

for A = Amtni ~ Aniari and ^ (Animi 3-^6 QQRmax^ and Q 

respectively. Similarly, optimal objective function value for K' = A'mm, A" = Kmax, 

K' = are expressed as R'nax^ respectively. We will assume that 

SOSC is satisfied. Especially, for an interior local optimal solution, the corresponding 

SOSC is expressed by 

> iSij' (9) 

We note that the detailed design and analysis of the ROI model are summarized in 

Otake, Chen, and Min (1997). 



www.manaraa.com

93 

3. Analysis under a General Setup Cost Function 

3.1 Inventory reduction analysis 

In this subsection, we will examine if the option to invest in setup operations results in 

inventory reduction. Let us now suppose that there are m (m > I) interior local optimal 

solutions designated by ), i = 1,..., m. We denote the corresponding profits 

by i = I,..., m. Let us denote a global optimal solution for Problem B and Problem 

D by (Qric'^nc) (QRC^ corresponding profit and ROI by FI^ and 

RQ, respectively. In order to show this, first, we will compare the global optimal order 

quantity for Problem A, with that for Problem B, Based on the FONCs, we 

can have the following Proposition 1: 

Proposition 1. (Inventory Reduction for Profit Maximization Problem) 

1) If then the level of inventory is reduced, and the reduction in the 

order quantity is given by 

2) If Hi = n;>„ then the level of inventory is reduced, and the reduction in the order 

quantity is 

3) If = n;;,.,,, then the level of inventory remains the same, and the reduction in 

the order quantity is zero. 

PROOF: Proof is similar to that in Proposition I of Chapter 2. • 

Similarly, we note that detailed investigation for Proposition 2 for the case of ROI 

model is summarized in Otake, Chen, and Min (1997). 



www.manaraa.com

94 

Proposition 2. (Inventory Reduction for ROI Maximization Problem) 

1) If /2c = ^mari inventory is reduced, and the reduction in the 

order quantity is given by 

2) If RQ = then the level of inventory is reduced, and the reduction in the order 

quantity is 

3) If Rq = R'min^ then the level of inventory remains the same, and the reduction in 

the order quantity is zero, 

PROOF: Proof is similar to that in Proposition 1 of Chapter 2, • 

Hence, if the decision maker finds it optimal to invest additional money in setup oper­

ations, the level of inventory will be always reduced under both the profit maximization 

model and the ROI maximization model. 

3.2 Derivation of unique global optimal solutions 

In this subsection, we will employ an additional criterion based on Proposition 1 and 

Proposition 2 to induce a unique global optimal solution. The additional criterion is: if 

the levels of ROI are the same, then the global optimal solution with the lowest level of 

order quantity will be preferred. Given that the levels of financial performance are the 

same, the smallest inventory is the most preferable due to factors that are external to 

this model (e.g., storage facilities, space, risk of deterioration and obsoleteness, etc.). 

In our model formulation for profit maximization, given the multiple global optimal 

solutions with 11^, we can show that the smallest order quantity is associated with the 

largest capital investment. Similarly, for ROI maximization, given the multiple global 
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optimal solutions with R'Q, we can show that the smallest order quantity is associated 

with the largest capital investment. 

Hence, if there are more than one global optimal solutions under profit maximization 

or ROI maximization as the primary criterion, then the global optimal solution with the 

largest capital investment will be the unique global optimal solution under the order 

quantity minimization as the secondary criterion. 

3.3 Comparison of unique global inventory level 

Now, in this subsection, we compare and contrast the unique global optimal solution 

for profit maximization with that for ROI maximization. Comparison of unique global 

inventory levels under profit maximization and ROI maximization is shown. We note 

that the level of the unique global order quantity indicates the level of unique global 

optimal inventory. 

Suppose that the opportunity cost of funds tied up in inventory is less than or equal 

to the optimal ROI level (i.e., I — i < R'). 

1) if KlfQ = Kmin under the profit maximization model, then 

2) if K^Q = under the profit maximization model, then we have the following two 

ceises. 

a) and if < AT/c = < K,nax under the ROI maximization model, then 

^'RUC - ̂^UG' 

b) otherwise, the relation between Q'R^^ and Quc^a undetermined. 

3) if K^Q = Kmax under the profit maximization model, then we have the following two 
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cases. 

a) and if = K^ax under the ROI maximization model, then < Qnuc* 

b) otherwise, the relation between and Qfiuo undetermined. 

Suppose that the opportunity cost of funds tied up in inventory is greater than the 

optimal ROI level (i.e., I — i > /?*). Then, the relation between and is 

undetermined. 

4. Analysis under a Rational Setup Cost Function 

In this section, we consider a rational function as a setup cost function, S { K )  =  ̂  

where 7 is a positive constant, in order to show additional managerial insights. This 

function is characterized as constant elasticity over any level of investment (see Chen 

1995). Furthermore, it can be easily verified that, for the rational setup cost function 

under profit maximization, both the boundary solutions and the interior solutions can 

be optimal. Then, we have the following Proposition 3 as in Chen (1995): 

Proposition 3. (Decision Making Rules for Rational Setup Cost Function 

under Profit Maximization) 

If K^min < then and ^ 

Otherwise, 

1) if [C < ATmaj-A'm.n ("llpn /v'* — /v' . anH D' — ! 

if IC > then — f\ anrl OX — /ZZH^ZT II io , cuen - A„.ar ana c^n^G " y f^maTic 

When some local optimal cases do not exist (e.g., is never optimal), similar 

decision making niles are also provided. The subsequent analyses are simpler because 
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of the absence of some local optimal solutions. For decision making rules for rational 

setup cost function under ROI maximization, details are shown in Otake, Chen, and 

Min (1997). We now proceed to illustrate a numerical example below. 

Example 1 

Let us suppose that C = $100, D = 25 per month, I = 0.2 per month, i = 0.1 per 

month, P = $150, Kmin = $50 per month, A'mar = $480 per month, and 7 = 15000. 

We note that these numerical values are identical to these in Chen (1995). However, 

the numerical example is different here. Our emphasis is on inventory reduction, which 

was NOT addressed in Chen (1995). When initial investment level is fixed at Kp = 50, 

the unique global optimal solutions under profit maximization and ROI maximization 

are (Qn^j/vn,.) = (27.39,50) and = (12.93,50) and the corresponding 

unique global optimal profit and ROI are 652 and 0.80, respectively. On the other 

hand, when there is an option to invest additional money in setup operations, we obtain 

the unique global optimal solutions under profit maximization and ROI maximization as 

— (15.54,155.36) and [Q'Ri,^J<}nra) = (5.33,169.05), respectively. Also, 

the corresponding unique global optimal profit and ROI are 784 and 1.47, respectively. 

We note that when there is an option to invest additional money in setup operations, 

profit is improved from 652 to 784 and level of inventory is reduced from 27.39 to 15.54. 

Similarly, when there is an option to invest additional money in setup operations, ROI 

is improved by 0.67 and the level of inventory is reduced by 7.60. Furthermore, since 

the unique global optimal ROI is greater than the opportunity cost of funds tied up in 

inventory and level of investment under ROI maximization is greater than that under 
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profit meiximization, we note that level of inventory under ROI maximization, 5.33, is 

less than that under profit maximization, 15.54. 

5. Analysis under a Linear Setup Cost Function 

In this section, we consider a linear function as a setup cost function, S ( K )  =  a — f ^ K  

where a and are positive constants. Contrary to the rational setup cost function, it 

is interesting to note that there does not exist interior local optimal solutions under the 

linear setup cost function. Then, we have the following Proposition 4 as in Chen (1995): 

Proposition 4. (Decision Making Rules for Linear Setup Cost Function under 

Profit Maximization) 

1) If /C < , then and 
"mm "max * 

2) If /c > . the,, aad Q-„^^ = 
"mm ^"max * 

When some local optimal cases do not exist (e.g., K^in is never optimal), similar 

decision making rules are also provided. The subsequent analyses are simpler because 

of the absence of some local optimal solutions. For decision making rules for linear 

setup cost function under ROI maximization, details are shown in Otake, Chen, and 

Min (1997). We again proceed to illustrate a numerical example below. 

Example 2 

Let us suppose that C = $100, D = 25 per month, / = 0.2 per month, i = 0.1 

per month, P = $150, = !S50, K„,aT = $480, a = 500, and jS = I. We note that 

these numerical values are identical to these in Chen (1995). However, the numerical 

example is different here. Our emphasis is on inventory reduction, which was NOT 
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addressed in Chen (1995). When initial investment level is fixed at Kp = 50, the 

unique global optimal solutions under profit maximization and ROI maximization are 

{Qup, = (33.37,50) and f'^Rp) = (19.5,50) and the corresponding profit and 

ROI are 501 and 0.50, respectively. On the other hand, when there is an option to invest 

additional money in setup operations, we obtain the unique global optimal solutions 

under profit maximization and ROI maximization as ~ (7.04,480) and 

= (3.11,480), respectively. Also, the corresponding unique global optimal 

profit and ROI are 603 and 0.934, respectively. We note that when there is an option 

to invest additional money in setup operations, both profit and ROI are improved and 

level of inventory under both cases is reduced. Furthermore, even if the level of the 

investment under profit and ROI maximization is the same as the maximum investment 

level, we note that level of inventory under ROI maximization is less than that under 

profit maximization. 

6. Concluding Remarks 

In this paper, we investigated inventory policies and investment in setup operations 

policies under profit maximization and ROI maximization. First, we studied how a 

profit maximization problem and an ROI maximization problem are formulated. Sec­

ond, we examined the unique global optimal solution by the primary criterion of profit 

maximization or ROI maximization and the secondary criterion of the order quantity 

minimization. 

In addition, we studied how the level of order quantities(i.e., the level of inventory) 
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under profit and ROI maximization are reduced when it is optimal to invest additional 

money in setup operations. Furthermore, by employing the secondary criterion, we 

compared and contrasted the unique global optimal solutions under profit and ROI 

maximization. 

Finally, under the assumption of rational and linear setup cost functions, we first 

obtained the unique global optimal solutions and provided the decision making rules to 

determine the unique global optimal solution. 

There are several extensions that will further enhance the importance and relevance of 

our model. They include incorporation of more sophisticated features such as shortages, 

delivery lags, and stochastic demand rates, etc. Also, it would be of interest to study the 

allocation of the investment in setup operations and quality improvement incorporating 

stochcistic nature. 
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CHAPTER 5. INVENTORY AND PRICING POLICIES 
FOR A DUOPOLY OF SUBSTITUTE PRODUCTS 

A paper published in Proceedings of the Fifth 
Industrial Engineering Research Conference ' 

Toshitsugu Otake and K. Jo Min 

Abstract 

We design and analyze two duopoly models for two profit maximizing sellers. Each 

seller is cissumed to produce one product, and his competitor is assumed to produce a 

substitute. Under the behavioral assumptions of a Coumot-type model and a Bertrand-

type model, we derive the equilibrium conditions for both models given linear demand 

and inverse demand functions. Next, under the assumption of symmetric costs, we derive 

the closed form inventory and pricing policies at equilibrium. Numerous interesting 

economic implications are obtained via calculus and numerical analyses. 

^Reprinted with permission of Proceedings of the Fifth 
Industrial Engineering Research Conference. 1996, pp. 293-298. 
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1. Introduction 

Recently, there have been numerous papers investigating inventory and pricing poli­

cies under competition (see, e.g., Min 1992; Chen and .Vlin 1995). There are few papers, 

however, that investigate the impacts of substitutes on the inventory and pricing poli­

cies. Given the prevalence of substitute products in real world inventory and pricing 

policies, it is highly desirable to explore the impacts of substitutes. 

As a first step toward the full exploration, in this paper, we design and analyze com­

petitive inventory models for two sellers. We assume that each seller produces a single 

product that can be a substitute for the competing sellers product. The quantitative 

relations among the substitutes and their corresponding prices are expressed by the de­

mand functions of the two products. In characterizing the competitive behavior of each 

seller, we employ a Coumot-type model and a Bertrand-type model (see. e.g., Varian 

1992). 

Under the Cournot-type competitive model, we assume that each seller maximizes 

his profit per unit time over his order quantity and his demand (i.e.. sale) per unit time 

assuming a given level of demand (i.e., sale) per unit time of his competitor. On the 

other hand, under the Bertrand-type competitive behavior, we assume that each seller 

maximizes his profit per unit time over his order quantity and Ms price per unit assuming 

a given level of price per unit of his competitor. We note that for both the Coumot-type 
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model and the Bertrand-type model, the determination of prices imply the determination 

of demands and vice versa. Hence, the pricing policies necessarily determine the sale 

(measured in demand per unit time) policies and vice versa. For both the Cournot-type 

model and the Bertrand-type model, we will assume that demands are linear functions 

of prices (and vice versa). This linearity assumption can be found in numerous papers 

and books (see, e.g., Choi 1991) and facilitates the analyses of our models. 

2. Two Types of Basic Models 

2.1 Definitions and assumptions 

For the Cournot-type model, we employ the linear inverse demand function as follows. 

P i  =  a  -  f S d i - f d - i  ( 1 )  

P j  =  a — f d x - i i d ^  ( 2 )  

where 

Pi', the per unit price of product i, i=I,2 

(/,•: the per unit time demand of product i, i=l,2 

a: the intercept of the inverse demand function 

/3: the own price effect 

7: the cross price effect 
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and parameters, a, /3, and 7, are positive. The cross price effects are symmetric as is 

required for well-behaved consumer demand function (Varian 1992). Also, /? > 7 and 

the difference P — j is directly related to the degree of product substitutability between 

the two products (Choi 1991). 

Similarly, for the Bertrand-type model, we employ the direct linear demand function 

as follows. 

di = 

d, = 

where 

a: the intercept of the demand function 

b: the own demand effect 

S: the cross demand effect 

where parameters, a, b, and 5, are positive and the cross demand effects are symmet­

ric and b > ^ and the difference b - ^ is inversely related to the degree of product 

substitutability between the two products. 

In order to mathematically formulate these models, the following variables and pa­

rameters are defined: For i = I, 2, 

Q{: the order quantity of product i for seller i 

A,-: the set up cost of product i 

(I — bPi S P2 

a -h 5P\ — bPi 

(3) 

(4) 
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C,-: the variable cost per unit time of product i 

Hi', the inventory holding cost per unit per unit time of product i 

7f: the cycle length for product i. 

The basic assumptions for traditional EOQ model applied in this paper are as follows: 

1) buyer's demand rate is constant over time, 

2) the replenishment rate is infinite, 

3) no shortage is allowed, 

4) there is no delivery lag. 

2.2 Cournot-type model with linear demand 

Under the definitions and assumptions shown above, we design and analyze the 

Cournot-type model as follows. For Seller 1, per unit time profit maximization problem 

is: 

maxni((5i,r/i|4) = [ a  -  ̂d i  - - ( d 2 ) d i  
Qiioi 

- (5) 

where d2 denotes a given level of demand per unit time for Seller 2. 

Similarly, for Seller 2, 
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maxll2((52,<^2|<^i) = { a - y d i  —  0 d 2 ) d 2  
Qi,d2 

^ - C 2 d 2 - ^ H , Q ,  ( 6 )  

where di denotes a given level of demand per unit time for Seller 1. 

The corresponding first order necessary conditions (FONC) for (5) are: 

H (7) 

d X l x  A x d i  1 rr _ n 

Meanwhile, the corresponding first order necessary conditions (FONC) for (6) are: 

ir =  ° - 2 M - 7 4 - ^ - C . = O  ( 9 )  

5112 _ A2d2 _n f i A A  
-  ~ ) r ~ ? " 2 - 0  ( 1 0 )  

dQ2 Ql 

From the cubic equation formula in the Standard Mathematical Table (Beyer 1981), 

we have the following trigonometric form for di and Qi. 

J 2 ( a - 7 ^ 2 - C i )  .,01 
d i =  —  cos-J (11) 
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where 

, 27l3H^Ar ,i 
COSPi = — ' 

'  U ( a - 7 c / 2 - C i ) 3 ^  

and ^TT < < ^TT assuming non-negative profit (see, e.g., Chen and Min 1994). 

The corresponding second order sufficient condition (SOSC) is given by AQidi(3 — 

A\ > 0. Similarly, the decision variables for Seller 2 are also obtained as 

<̂ 2 = 3̂  coŝ j (13) 

—M— ' ' " ' T  

where , 27fiH2A. 
cosffo = — = rr-r P 

U { a - ' y d i - C - 2 r  

and < 02 < 

The corresponding second order suflBcient condition (SOSC) is given by AQidifi — 

Aj > 0. 

At an equilibrium point, d\ = di and <^2 = <^2- Hence, the equilibrium point can be 

obtained by solving (11), (12), (13), (14) given di = d^ and di = for d', d^, Ql, and 

For the basic Cournot-type model, it has not been possible to obtain a closed form 
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equilibrium point. Therefore, we employ numerical methods to solve for the equilibrium 

point. 

Example 1. 

Let Ai = $1000, Hi = $4.0, C, = $20, = $750, //a = $3.0, C2 = $15, a=100, 

/3=1.0,  and 7=0.5.  Then, the corresponding equil ibrium point is  given by (c/j ,  Q')=(27.6, 

117.4), (d^, Q2)=(3'2J, 127.8), and nj=525, and 02=875, Given the same price and 

cross price effects, the profit difference can be explained by the cost difference. 

2.3 Bertrand-type model with linear demand 

As mentioned before, the Bertrand-type model involves the price levels instead of 

the demand levels as the decision variables. Thus, for Seller 1, per unit time profit 

maximization problem for the Bertrand-type model is derived as follows. 

maxni((?i ,  Fi IA) = Pi(a -  bPi + SP2) 
Qi-n 

.4i(a — bPi -h SP2) 

Qi 

- C , { a - b P , + 5 P 2 )  

- \hiQi (15) 

where P2 denotes a given level of per unit price for product 2. 

Similarly, for Seller 2, 
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m a x I l j C Q i , =  P - 2 [ a - > r 5 P x - b P 2 )  
Q2,r2 

A2{a 8Pi — bPi) 

Qi 

— O i i ^ - h ^ P i  —b p 2 )  

- \h2Q2 (16) 

where Pi denotes a given level of per unit price for product 1. 

Taking the partial derivative with respect to Pj and Qi of the objective function for 

(15), we get FONC as 

=  a _ 2 6 P , +  ̂  +  = 0  ( 1 7 )  

ir  = ^(„-6P,+JA,- i« .=o (IS) 

Meanwhile, the corresponding FONC for (16) are: 

= „_26P2+^A+^ + 6C2=0 (19) 

+ (20) 

Employing the cubic function formula, we have the following trigonometric forms for 
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„ { a  +  5 P 2 ) { i - 2 c o s ^ f ) + 2 b C i c o s ^ f  

36 

. _ . 276%A, ,j 

'  ^4(a  +  <yF2-6Ci)3^'  

(22) 

and jTT < 01 < jTT. 

The corresponding SOSC is given by AQ\{a — bPi + 5P2) — bAi > 0. 

On the other hand, we obtain the trigonometric forms for Seller 2 as follows. 

os^ 

lb 

„ _ (a + crA)(3 - 2 cos^ f) + 2bC2 cos' ̂  
~ -JA 

 ̂ , ^ f ^ { o .  +  5 P i — b C 2 ) A 2 - f i  0-2 

—m— 
(24) 

where 

r 27b'H2A2 ,1 cos 02 = — P 
U i a  +  S P i - b C i ) ^ ^  

and ^ir <62 < frr. 

The corresponding SOSC is given by 4(52(a + SPi — 6P2) — bA2 > 0. 

At an equilibrium point, Pi = Pi and P2 = ^2- Hence, the equilibrium point can be 
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obtained by solving (21), (22), (23), and (24) given Pi = Pi and P-z = Pi for Pj', Pj'j 

and For the basic Bertrand-type model, it has not been possible to obtain a 

closed form equilibrium point. Therefore, we employ numerical methods to solve for the 

equilibrium point. 

Example 2. 

Let Ai = $1000, Hi = $4.0, C, = $20, A2 = $750, H2 = $3.0, Ca = $15, 

a=100, b=1.0, and ^=0.5. Then, the corresponding equilibrium point is given by (P*, 

(3i)=(83.1, 160), {P2, (52)=(80.4, 175), and ni=2927, and 11.2=3473. Given the same 

own demand and cross demand effects, the profit difference can be explained by the cost 

difference. 

3. Basic Models under Symmetric Costs 

3.1 Cournot-type model with linear demand under symmetric costs 

In this section, we assume that the costs of Seller I and Seller 2 are symmetric, i.e., 

Ai = A2, Ci = C2, and Hi — H2. This can be a reasonable assumption for products that 

differ in color, flavor, etc. With this assumption, we obtain a closed form equilibrium 

point. And with this closed form equilibrium point, we provide economic implications 

and managerial insights. Under the cissumption of symmetric costs, it can be easily 

verified that there exists an equilibrium point when d\ = rf.] and Q* = Qj- Solving 

equations (11), (12), (13), and (14) given di = di, di = ^2, dl = and Ql = we 

obtain the following equation. 
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,3 a — C ,i 1 , hA. i „ , , 
7 ^  H = 0  f 2 5 )  

2/3 + 7 2^ + 7^2^ ^ 

From the cubic equation formula, we have the following trigonometric forms for d, 

Q, and T for Seller 1 and 2. 

^ 4(a-C) 2^1 

where 

. 8>l(a — C) ,i Oi 

^ ̂ 3.4(2/? + 7) ^ , 

^2H(a-Cy ^ :3 ^ 

0 7 A H { 2 3  +  ' r ) , x .  
cos 01 = — -\-i 

^ 8(a-C)3 J 

and ^TT < 01 < |7r. 

SOSC at equilibrium is given by AQd^ — .4 > 0. 

(28) 
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3,2 Bertrand-type model with linear demand under symmetric costs 

Similarly, we zissume that the costs of Seller 1 and Seller 2 are symmetric, i.e., 

•^1 = Mt Ci = Cj, and Hi = H^- Under the assumption of symmetric costs, it can 

be easily verified that there exists an equilibrium point when P' = Pj* ^"d Ql = Q^. 

Solving equations (21), (22), (23), and (24) given Pi = Pj, P2 = P2, Pi = P2, and 

Qj = we obtain the closed forms as follows: 

2 ( 6 - i ) 6 A ' ^  

^  Ib- S  h { 2 b - S )  ^ '  

Applying the cubic equation formula for Trigonometric form, for Seller 1 and 2, we get 

'2A ,ab-{b-5)Cb..j, 02 

Substituting the closed form for Q into the FONC, for Seller 1 and 2, we have 

:i<.(26 - f) - 4[a6 - (6 - J1C6] cos' ^ 

3{b-5)C2b-S) ' ' 

,  3 / 1 ( 2 6 - J )  , , ,  S j ,  ,  

where 

'• S{ab-(b-S)Cb}^ ' 

and jTT < 02 < fTT. 

SOSC at equilibrium is given by AQ{a — (6 — 5)P} — bA>Q. 



www.manaraa.com

115 

4. Economic Analysis under Symmetric Costs 

4.1 Economic analysis for the cournot-type model 

Let us examine the sensitivity of decision variables with respect to cost and demand 

parameters. By difFereutiating the decision variables at equilibrium with respect to the 

parameters, we have the following proposition. 

Proposition 1: Suppose that the decision point, {d', Q'), under the Cournot-type 

model, satisfy FONC, SOSC, and equilibrium condition. Then, 

dO' dO' dO' dO' 60' 
-^ > 0, ^ < 0, ^ < 0, ^ > 0, ^ < 0, 
oA oH oC da 60 

dd' 6d' 6d' 6d' „ dd' 

From the cycle length (in closed form solution) under the Cournot-type model, we 

have the following proposition. 

Proposition 2: Suppose that the decision point, ((/*, Q*), under the Cournot-type 

model, satisfy FONC, SOSC, and equilibrium condition- Then, for own demand and 

cost parameters, 

6T' ^ dT' ^ 6T' „ 6T- „ 6T' „ 
-TTT > 0' "air < 0' > 0 — < 0,  ̂> 0. 
dA dH dC da 60 

We can also obtain the magnitudes of changes in d' and Q' with respect to changes 
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In parameters at equilibrium. For example, it is verified that 

dd' _ 4(q — C) _6I 

M  ~  ~ 9 ( 2 i 3  +  7 ) ' ^ ° ^ y  

X sin^[ r] < 0 

dd' 4(a — C) 01 

IH ^ "9(2^3 + 7) 

X  s i n ^ [  r l  <  0  
3 ^//(l  -p2)r 

where 

,27A//(2^ + 7),. 
" = ' 8(a-C) 1* 

If the the set up cost is much greater than the inventory holding cost per unit per 

unit time, i.e., H < A, then ^ < |^ < 0 at equilibrium. Similarly, numerous analyses 

can be made on the rest of magnitudes. In this paper, however, we focus on the signs of 

changes only (due to the page limit; the complete list of signs and magnitudes of changes 

is available from the authors upon request). 

4.2 Economic analysis for the Bertrand-type model 

As in the case of the Cournot-type model, by differentiating the decision variables 

at equilibrium with respect to the parameters, we have the following proposition. 

Proposition 3: Suppose that the decision point, [P', Q*), under the Bertrand-type 

model, satisfy FONC, SOSC, and equilibrium condition. Then, 
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dQ' 

dA 
> 0 ,  

dQ' 

dH 
< 0 ,  

dQ' 

dC 
< 0 ,  

dQ-

da 
> 0 ,  

dQ-

db 
< 0 ,  

dP' „ dP' „ dP' „ dP' „ dP' „ 
dA ̂  ' dH ̂  ̂ dC ̂  ' da ^ ' db ^ 

To obtain signs of ^ and we assume that 2(26 — 5)dQ — Ab{b — J) > 0 and 

2Ad + 2cdQ + AbP — APdQ > 0. 

From the cycle length (in closed form solution) under the Bertrand-type model, we 

can summarize the following proposition. 

Proposition 4: Suppose that the decision point, {P', Q'), under the Bertrand-type 

model, satisfy FONC, SOSC, and equilibrium condition. Then, for own demand and 

cost parameters, 

dT' „ dT- „ dT' ^ dT' „ dT' „ 
dA  ̂  ' dH  ̂  ' dC^ da  ̂  ' db ^  

We note that from Proposition 1, 2, 3, and 4, numerous managerial insights can be 

obtained. For example, > 0, < 0, and < 0 for both the Cournot-type model 

and the Bertrand-type model. And < 0. |^ < 0, and ^ < 0 for the Cournot-type 

model. This implies that ^ > 0, > 0, and ^ > 0. This is consistent with 

%r ^ ^ ^ Bertrand-type model shown in Proposition 3. 
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Table 1 Sensitivity analysis I 

Hv CI oti Pi 7i 
Benchmark 500 4.0 20 100 1.0 0.50 
A1/A2 > 1 750 4.0 20 100 1.0 0.50 
Hi/Hi > 1 500 4.5 20 100 1.0 0.50 
CIFCI > I 500 4.0 30 100 1.0 0.50 
AI/A2 > 1 500 4.0 20 150 1.0 0.50 

Pi/132 > 1 500 4.0 20 100 1.5 0.50 

5. Numerical Analysis under Symmetric Costs 

In this section, we numerically analyze the Cournot-type model and the Bertrand-

type model via series of illustrated example. 

5.1 Numerical analysis for the Cournot-type model 

Example 3. 

Let Ai = ^2 = $500, Hi = Hi = $4.0, C, = C, = $20, £v=100, 0=1.0, and 

7=0.5. Then, the corresponding equilibrium point is given by (c/p Ql)={29.7, 86.1), 

g5)=(29.7, 86.1), and 0^=709, and 02=709. 

From this benchmark, where ^ ^ ^ ^ = 1, |^ = 1, and ^ = 1, we 

vary the parameter values of Seller 1 while we keep the parameter values of Seller 2 as 

the same. Table 1 summarizes such changes. The resulting equilibrium points due to 

these changes are summarized in Table 2. 

From the above two tables, numerous observations can be made for managerial in­

sights. For example, if the set up cost for own product is increased from 500 to 750, 

then the sales quantity per unit time will decrease while the order quantity per cycle 
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Table 2 Sensitivity analysis II 

d; <31 Ql ni n; 
Benchmark 29.7 29.7 86.1 86.1 709 709 

AxfA-i. > 1 28.9 29.9 104.2 86.4 629 720 
> 1 29.5 29.7 80.9 86.2 687 711 

C1/C2 > 1 24.0 31.2 77.4 88.3 420 795 

01/02 > 1 57.3 22.3 120.0 74.7 3047 349 

/?l//^2 > 1 18.8 32.5 68.6 90.1 394 877 

Table 3 Sensitivity analysis III 

A, Hi c, Oi 6, 
Benchmark 500 4.0 20 100 1.0 0.50 
Ai/A-2 > 1 750 4.0 20 100 1.0 0.50 
HxIH2 > 1 500 4.5 20 100 1.0 0.50 

> 1 500 4.0 30 100 1.0 0.50 
o-xla-i > 1 500 4.0 20 150 1.0 0.50 
61/62 > 1 500 4.0 20 100 1.5 0.50 

will increase. Hence, the change of the cycle length is determined as being longer. 

5.2 Numerical analysis for the Bertrand-type model 

Next, the following example for the Bertrand-type model is illustrated. 

Example 4. 

Let AI = A2 = $500, Hi = H2 = $4.0, Ci = Ci = $20, a=100, b=1.0, and <^=0.5. 

Then, the corresponding equilibrium point is given by {P^, (5i)=(82.8, 121.1), 

Q2)=(82.8, 121.1), and 11^=3195, and 112=3195. From this benchmark, where ^ = 1, 

^ = 1,^ = 1, ^ = l,j^ = l, and ^ = 1, we vary the parameter values of Seller 1 while 

we keep the parameter values of Seller 2 as the same. Table 3 summarizes such changes. 

The resulting equilibrium points due to these changes are summarized in Table 4. 

We note that the signs of changes in decision variables in this section are consistent 
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Table 4 Sensitivity analysis IV 

P: PI Q\ Q\ ni 
Benchmark 82.8 82.8 121.1 121.1 3195 3195 

AxlAi > 1 83.3 82.9 147.7 121.2 3090 3209 
H.fHi > 1 82.9 82.8 114.0 121.1 3166 3199 
CxfCi > 1 88.2 84.1 116.0 122.5 2670 3355 
ci/oa > 1 109.0 89.2 146.3 127.8 7034 4008 
61/62 > 1 58.3 76.8 112.8 114.5 1499 2517 

with the results from Proposition 1, 2, 3, and 4 of the previous section. 

6. Concluding Remarks 

We designed and analyzed two duopoly models for substitute products. For both the 

Cournot-type model and the Bertrand-type model, we showed how the optimal inventory 

and pricing policies were derived from the first order necessary conditions. We further 

showed how the inventory and pricing policies were obtained at equilibrium. Next, under 

the assumption of symmetric costs, we obtained the closed form inventory and pricing 

policies at equilibrium. From the closed fonn policies at equilibrium, numerous economic 

implications were obtained via calculus and numerical analyses. The ba^ic models in 

this paper can be extended by considering such features as three or more sellers, three 

or more products, and nonlinear demand and/or inverse demand functions. 
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CHAPTER 6. INVENTORY AND PRICING POLICIES 
FOR A DUOPOLY OF COMPLEMENTS 

A paper published in Proceedings of the Sixth 
Industrial Engineering Research Conference ' 

Toshitsugu Otake and K. Jo Min 

Abstract 

We design and analyze two duopoly models for two competing sellers. Each seller 

is assumed to be a profit maximizing EOQ-based decision maker facing linear demand 

functions. We also assume that a single product is sold by each seller, and the two 

products of the two sellers are complements. Under these assumptions, in the first 

duopoly model, we develop a Coumot-type duopoly model where competition is over 

the selling quantity. In the second duopoly model, we develop a Bertrand-type duopoly 

model where competition is over the selling price. For both models, we derive and analyze 

equilibrium inventory and pricing policies. Various interesting numerical examples are 

illustrated. 

'^Reprmted with permission of Proceedings of the Sixth 
Industrial Engineering Research Conference, 1997, pp. 78.3-788. 
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Economic Order Quantity, Duopoly, Complements, and Pricing. 

1. Introduction 

In the inventory literature, we find numerous papers examining the economic impli­

cations of pricing and inventory policies under competition. For example, Min (1992) 

investigates both uniform and quantity discount pricing and inventory policies under 

competition. Recently, Otake and Min (1995) extend Min (1992) by considering two 

substitute products where an increase in one product's price results in an increase in 

another product's demand. In this paper, we examine a parallel case of Otake and 

Min (1995). Namely, an increase in one product's price results in a decrease in another 

products demand, i.e., the two products are complement (e.g., tennis rackets and tennis 

balls). Even though there have been extensive studies of complements in the literature 

of economic theory, to our knowledge, there have been few papers dealing with comple­

ments in the context of inventory policies (competitive or otherwise). Hence, given the 

prevalence of complements in the real world, it is highly desirable to derive economic 

implications and managerial insights in the context of inventory. 

In this paper, based on Cournot-type and Bertrand-type competitive behavioral cis-

sumptions (see e.g., Mas-Collel et al. 1995; Varian 1992), we design and analyze pricing 

and inventory policies for two sellers. Each seller is assumed to produce a single product 

and maximize his profit and the product of one seller is a complement to the product of 

the other seller. 
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Specifically, under the Cournot-type model, each seller chooses his demand (i.e., sale) 

per unit time as a decision variable in order to maximize his profit per unit time given 

his expectation on the level of demand (i.e., sale) per unit time of the other seller. On 

the other hand, under the Bertrand-type model, each seller chooses his price per unit as 

a decision variable in order to maximize his profit per unit time given his expectation 

on the level of price per unit of the other seller. Because of dependency of demand 

and price, the pricing policies determine the sale policies: conversely, the sale policies 

determine the price policies. Dependency of demand and price are expressed by the 

linear demand functions, which are widely found in the literature of economics (see Choi 

1991; Vives 1985). 

Under these assumptions, we first derive the equilibrium conditions for both Cournot-

type and Bertrand-type Models. Next, cissuming the symmetric demand and cost func­

tions, we derive the closed form solutions and analyze inventory and pricing policies in 

depth. Finally, we derive various interesting managerial insights and economic implica­

tions. For example, the Bertrand-type competition results in higher total sale per unit 

time than the Cournot-type competition, which is consistent with the outcome shown 

in the literature of economics. 



www.manaraa.com

125 

2. Two Types of Basic Models 

2.1 Definitions and assumptions 

For the Cournot-type model, the following linear inverse demand function is utilized. 

where 

Pi', the per unit price of product i, 

(/,•: the per unit time demand of product i, 

a,-: the intercept of the inverse demand function 

/?,•: the own price effect 

7: the cross price effect V i=l and 2, 

and parameters, or,-, and 7 are positive. The cross price effects are symmetric as is 

required for well-behaved consumer demand function (see Varian 1992). Furthermore, 

2 
represents the degree of product differentiation and which is between 0 and 1. 

Hence, 7^ must be less than or equal to the product of fii and /?2 (see Choi 1991). 

Similarly, for the Bertrand-type model, the following direct linear demand function 

is employed. 

Pi = a i  - 0 \ d x  +7c/2 (1) 

p- i  =0:2+ id i  -  Pid2  (2) 
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d x  =  a i  - 6 i p ,  — 5 p i  (3) 

t/j — ^2 — — ^2P2 (4) 

where 

 ,-: the intercept of the demand function 

 ,-: the own demand effect 

5: the cross demand effect V i=l and 2, 

and parameters, a,-, 6,-, and 5^ are positive and the cross demand effects are symmetric. 

Also, the sum of the product of the intercept for product i and the own price effect for 

product j and the product of the intercept for the product j and the cross price effect 

is greater than zero for i,j = 1,2 and i ̂  j (see Vives 1985). The relations among the 

parameters of the demand functions and inverse demand functions are as follows: 

M- - 7' 

a j f i j  -j- Qfy7 
(5) 

(6) 

(7) 

where i, j=l, 2 and i ̂  /. 

In order to mathematically formulate these models, the following variables and pa-
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rameters are defined: For i = 1, 2, 

Qi: the order quantity of product i for Seller i 

A{: the set up cost of product i 

c,-: the variable cost per unit of product i 

hii the inventory holding cost per unit per unit 

time of product i 

Til the cycle length for product i. 

Also, by the definition of complements (see e.g., Varian 1992), we assume |^ < 0 and 

gj < 0 for i, j=l, 2. 

The basic assumptions for traditional EOQ model applied in this paper are as follows. 

1) buyer's demand rate is constant over time, 

2) the replenishment rate is infuiite, 

3) no shortage is allowed, 

4) there is no delivery lag. 

2.2 Cournot-type model 

Under the definitions and assumptions shown above, we design and analyze the 

Cournot-type model with the linear demand function as follows. For Seller i, i=l and 2, 

the per unit time profit maximization problem is: 
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max n,(Q,-, d i \ d j )  = (a,— + ' r d j ) d i  
Vi.oi 

^-Cidi-^-hiQi (8) 

where dj denotes a given level of demand per unit time for Seller j and i, j=l, 2 and 

I 7^y. 

The corresponding first order necessary conditions (FONC) for (8) are: 

^ = a,-2ftrf, + 7 R F / - ^ - C , = 0  ( 9 )  

^  L  _ n  

dQi Q] 9' 

From the cubic equation formula in the Standard Mathematical Table (Beyer 1981), 

we have the following solutions for di  and Qi. i=1.2, given dj ,  j  i .  

J -(Ori + fdj Ci) 2 
= 3ft ? (11) 

^ r4^,(a.-l-7(/y-c.-),j. di 

where 

COStft = — 2 
4(Q.--+-7(fj -c,-)3 

and iff < Qi < assuming non-negative profit (see, e.g., Chen and Min 1994). 



www.manaraa.com

129 

The corresponding second order sufficient condition (SOSC) is given by 

AQidipi - /li > 0. 

We note that (II) and (12) are the reaction functions illustrating the optimal choices 

for Seller i given Seller j's decision on dj. 

2.3 Bertrand-type model 

Likewise, for Seller i, i=l,2, the per unit time profit maximization problem is as 

follows. 

maxn,(Q,-,/?,lpy) = p i ( a i  -  b i p i  -  S p j )  
VitPi 

A i { a i  -  b i p i  -  S p j )  

Qi 

-  C i ( a i - b i P i  - S p j )  

- (13) 

where pj denotes a given level of per unit price for product j and i, j=l. 2 and z ^ j. 

Taking the partial derivative with respect to p,- and Qi of the objective function for 

(13), we get FONC as 
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dfit — » »• _ _ / t a \ 
= a.- - 2biPi - S p j  + -pr- + bid = 0 (14) 

opi Qi 

5rTi /\i f , —_ . 1-1  r t  / -  — V  
-'(P.-- •!«) - J*" =» (15) 

Employing the cubic function formula, we have the following trigonometric forms for 

Seller 1. 

where 

{ a i - 5 p j ) { : ] - 2 c o s ' ^ ^ ) + 2 b i C i C o s ^ ^  " = % 

, -mfhiAi 
COS Of = h 
' U{ a , - 5 p j - b i C i ) = ^  

and jTT < d{ < j/T. 

The corresponding SOSC is given by 

(17) 

4<3,(at - 6,-p£ - Spj) - biAi > 0. 

We note that (16) and (17) are the reaction functions illustrating the optimal choices 
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for Seller i given Seller j's decision on py. We also note that given reaction functions of 

(11) and (12) or (16) and (17), it is possible to obtain equilibrium points numerically. 

For example, we can solve numerically (11) and (12), i=l,2, where d\ = dx and = d^ 

for (/j, Q' and for a Cournot-type equilibrium solution. Likewise, we can solve 

numerically (16) and (17), i=l,2, where pi = pi and p2 = pi for pj, pj, Q\ and 

for a Bertrand-type equilibrium solution. In the next subsection, we proceed to assume 

symmetric demand and cost functions, and solve for an equilibrium solution in closed 

form. 

3. Basic Models under Symmetric Data 

3.1 Cournot-type model under symmetric cost 

and inverse demand functions 

In this section, we assume that the inverse demand and the cost functions of Seller 

1 and Seller 2 are symmetric, i.e., .4i = A-i = .4, ci = c-, = c, h\ — h2 = h, cti = 

aj = a, and 0I = P-Z = (3. Under the assumption of symmetric cost and inverse demand 

functions, it can be easily verified that there exists an equilibrium point where dl = t/j 

and Ql = Q^. Solving equations (11) and (12) given di = du d-z = dz, d\ = d\^ and 

Q\ = Q2, we obtain the following equation. 
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where 

2 7 A h { 2 ^ j ) ^ i  

S(a — cf 
- - - n  -7/1 
COS 01 = -[—^77—:^J 

and jTT < 01 < ~it. 

SOSC at equilibrium is given by 

- A > 0. 

3.2 Bertrand-type model under symmetric cost and demand function 

Similarly, we cissume that the cost and demand functions of Seller 1 and Seller 2 are 

symmetric, i.e., Ai = A2 = A, ci = c-i = c, hi — I12 = /i, ai = = a, 61 = 62 = 6, and 

Si = S2 = S. Under the assumption of symmetric cost and demand functions, it can be 

ecisily verified that there exists an equilibrium solutions where pj = and Ql = Q\. 

Solving equations (16) and (17) given pi = pi, pa = p2, Pi = and Q\ = Ql, we obtain 

the closed forms as follows. 
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^ a b - { h  +  5 ) c b ^ ^ ^  6 2  
=  2 6 ? ! — ( 2 ' '  

Substituting the closed form for Q into the FONC, for Seller 1 and 2, we have 

where 

, _ 3a(26 + (5^) — 4[ab — (b + ̂ )c6] cos^ ^ 

^ '3{b + 5){2b + 5) 

rp. _ r 'iAClb + S) . ,1^ 02,_I 

"• ^2li[ab - (6 + ^)c6| ̂  .3 ^ 

.27b-'Ali{b + 5)^{2b + S),i 
cos 02 = — 7 ^ 

S{ab — (6 + 5)cb}^ 

and <02 < |7r. 

SOSC at equilibrium is given by 

4<3K« - (^ + S)Pb} -bA>0. 
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4. Economic Analysis 

4.1 Economic analysis for the Cournot-type model 

Let us examine the sensitivity of decision variables with respect to cost and inverse 

demand parameters numerically and analytically. By differentiating the decision vari­

ables at equilibrium with respect to the parameters, we have the following proposition. 

Proposition 1: Suppose that the decision point, ( d ' ,  Q ' ) ,  under the Cournot-type 

model, satisfies FONC, SOSC, and equilibrium condition. Then, 

dQ: dQ: dQ: do: do-
-^ > 0, ^ < 0. ^ < 0, ^ > 0. ^ < 0, 
dA dh dc da dji 

ddl ddl ddl ddl . ddl 
^ < 0, TjT < 0, -rp < 0, ^ > 0, -^ < 0. 
oA all dc da 80 

From the cycle length (in closed form solution) under the Cournot-type model, we 

have the following proposition. 

Proposition 2: Suppose that the decision point, (r/*, Q ' ) ,  under the Cournot-type 

model, satisfies FONC, SOSC, and equilibrium condition. Then, for own demand and 

cost parameters, 

dT: dT' dT' dT' dT' 
^ > 0 ,  ̂ < 0 ,  ̂ > 0  ̂ < 0 ,  ̂ > 0 .  
dA dh dc da dp 

We can also obtain the magnitudes of changes in d' and Q' with respect to changes in 

various parameters at equilibrium. For example, it is verified that 
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dd: 4 2 01 
cos — 

da 3{2(3 - j) 

+ . = cos ^ sin ^ > 0 (24) 
3(2/3-7)0 -p^ 3 3 

dd' 8(a - c) 2 
 ̂ COS — 

d/3 3(2/? - 7)2 3 

8(a —c)p . Ox „ 
cos—sm —<0 (25) 

9(2/3-7)2 3 3 

where 

^ S(o-c)3 ' 

(24) represents the change of magnitude in d} when the intercept of inverse demand 

increases infinitesimally. Also, (25) represents the change magnitude in d} when the 

own price effect of inverse demand increases infinitesimally. 

4.2 Economic analysis for the Bertrand-type model 

Likewise, we have the following propositions. 

Proposition 3: Suppose that the decision point, (p*, Q ' ) ,  under the Bertrand-type 

model, satisfies FONC, SOSC, and equilibrium condition. Then, 
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^ > 0  ̂ < 0  ̂ < 0  ̂ > 0  ̂ < 0  
dA ^ ' d/i ^ ' dc da ^ ' a/? 

^ > 0  ̂ > 0  ̂ > 0  ̂ > 0  ̂ < 0  
dA ' dh ' 5c ' 5a ' db 

To obtain signs of and we assume that 2(26 4- 5)dQ — Ab{b + ̂ ) > 0 and 

2Ad + 2cdQ + AbP - APdQ > 0. 

From tlie cycle length (in closed form solution) under the Bertrand-type model, we 

can summarize the following proposition. 

Proposition 4: Suppose that the decision point, (/;*, Q'), under the Bertrand-type 

model, satisfies FONC, SOSC, and equilibrium condition. Then, for own demand and 

cost parameters. 

—— > 0 —- < 0 —^ > 0 —- < 0 —- > 0 
dA ^ ' dh ' 5c ^ ' db ^ 

We note that from Proposition 1, 2, 3, and 4, numerous managerial insights can be 

obtained. For example, > 0, < 0, and < 0 for both the Cournot-type model 

and the Bertrand-type model. And ^ < 0, ^ < 0, and ^ < 0 for the Cournot-type 

model. This implies that ^ > 0, ^ > 0, and ^ > 0. This is consistent with 

> 0, > 0, and > 0, for the Bertrand-type model shown in Proposition 3. 

Economic interpretations are straightforward, e.g., the increase in the setup cost leads 

to the increase in the order quantity, the decrease in demand, and the increase in price. 
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Table 1 Sensitivity analysis I 

/ii Cl Qfi 7i 
Benchmark 500 4.0 20 100 1.0 0.50 

A\lAi > 1 505 4.0 20 100 1.0 0.50 
/ll//l2 > 1 500 4.04 20 100 1.0 0.50 
Ci/C2 > 1 500 4.0 20.2 100 1.0 0.50 
Qfj/aa > 1 500 4.0 20 101 1.0 0.50 
A//S2 > 1 500 4.0 20 100 1.01 0.50 

5. Numerical Analysis under Symmetric Cost 

and Demand/Inverse Demand Functions 

In this section, we numerically analyze the Cournot-type model and the Bertrand-

type model via a series of illustrated examples. 

5.1 Numerical analysis for the Cournot-type model 

Example 1. 

Let Ai = Ai = $500, hi = li-i = S4.0. c, = c, = S20, a=100, ^=1.0, and 7=0.5. 

Then, the corresponding equilibrium point is given by (rf^, (5t)=(50.4, 112.2), (rf,, 

Q^)=(50.4, 112.2), and ni=2:n2, and 02=2312. 

From this benchmark, where 4^ = 1, ^ = 1. ^ = 1^ = 1 = 1 and ^ = 1, we A7 /12 ' C2 1^2 fh ' ^>2 ' 

vary the parameter values of Seller 1 by 1 percent of the given values while we keep the 

parameter values of Seller 2 as the same. Table 1 summarizes such changes. 

The percentage change of the resulting equilibrium points due to above changes from 

the Benchmark value are summarized in Table 2. 

From the above two tables, numerous observations can be made for managerial in-
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Table 2 Sensitivity analysis II 

d\ Q\ Q2 n: n; 
Benchmark 50.4 50.4 112.2 112.2 2312 2312 
AiJA-i > I -0.02 -0.01 0.49 -0.003 -0.1 -0.01 
hilh2 > 1 -0.02 -0.01 -0.51 -0.003 -0.4 -0.01 
C1/C2 > 1 -0.22 -0.06 -0.11 -0.03 -0.13 -0.01 
Ct\l0l2 > 1 1.09 0.28 0.54 0.14 2.3 0.6 
AM > 1 -1.1 -0.28 -0.54 -0.13 -1.23 -0.59 

sights. For example, if the set up cost for our own product is increased from 500 to 505, 

then the sales quantity per unit time will decrease while the order quantity per cycle 

will increase. 

5.2 Numerical analysis for the Bertrand-type model 

Next, the following example for the Bertrand-type model is illustrated. 

Example 2. 

Let Ai = A2 = $500, III = I12 = $4.0, ci = Ci = $20, and a = 100, P = I, and 

7 = 0.5, that is, a=200, b=5, and ^ | by (5) through (7). Then, the correspond­

ing equilibrium point is given by (p,, <5t)=(69.6, 123.2), (pj, (32)=(69.6, 123.2), and 

IIi=2522, and 112=2522. From this benchmark, where 4^ = 1. ^ = 1, ^ = 1, ^ = I, 
^ * A2 ' /l2 ' C2 ^2 ^ 

= 1, and ^ = 1, we vary the parameter values of .Seller 1 while we keep the param­

eter values of Seller 2 as the same. Table 3 summarizes such changes. The resulting 

equilibrium points due to above changes are summarized in Table 4 . 

We note that the signs of changes in decision variables in this section are consistent 

with the results from Proposition 1, 2. 3. and 4 of the previous section. From these 

e.xamples, with the equivalent parameter values, we find that the total profit for the 
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Table 3 Sensitivity analysis III 

A\ hx Cl Qi bi 
Benchmark 500 4.0 20 200 1.333 0.666 
A\lAi > 1 505 4.0 20 200 1.333 0.666 
/11//12 > 1 500 4.04 20 200 1.333 0.666 
C1/C2 > 1 500 4.0 20.2 200 1.333 0.666 
Qi/a2 > 1 500 4.0 20 201.333 1.333 0.666 

(3x11^2 > 1 500 4.0 20 197.368 1.3158 0.658 

Table 4 Sensitivity analysis IV 

P* P2 Q\ Ql ni n; 
Benchmark 69.6 69.6 123.2 123.2 2522 2522 
A\IAi > 1 0.02 -0.004 0.49 -0.003 -0.1 1 0

 
0

 

/11//12 > 1 0.02 -0.004 -0.51 -0.003 -0.4 -0.01 
C1/C2 > 1 0.16 -0.04 -0.11 -0.03 -0.1 -0.13 
oti/a-i > 1 0.66 0.19 0.52 0.15 -0.2 -0.55 
A/^2 > 1 0.05 -0.11 -0.65 -0.26 0.1 -0.04 

Bertrand is higher than that for the Cournot. Hence, in a real-life setting, each firm 

has an incentive to induce price-competition rather than quantity-competition. Further­

more, when we observe the demand level under the Bertrand-type model and under the 

Cournot-type model, we can obtain the following relations. 

dl. < d;. (26) 

d'cc < (27) 

PL < p'cs (28) 

Pbc < p'cc (29) 
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where the first letter c or 6 of the subscript stands for the Cournot-type Model or 

the Bertrand-type Model, respectively. Likewise, the second letter 5 or c represents 

substitutes or complements, respectively. In the theory of economics, this implies that 

the Cournot-type model is more monopolistic competition than the Bertrand-type model 

(see Vives 1985). 

6. Comparison and Contrast of Substitutes with Complements 

We are currently in the process of comparing and contrasting the outcomes from 

substitute products (see Otake and Min 1995) and from complements. In particular, 

under symmetric cost and demand/inverse demand functions, we define the following: 

Sec' a critical quantity of complements under Coumot-type model. 

She- a critical quantity of complements under Bertrand-type model. 

So,: a critical quantity of substitutes under Coumot-type model, 

Sba'. a critical quantity of substitutes under Bertrand-type model. 

A critical quantity here can represent p, d, Q, and T. 

By mathematical manipulation of the order quantities and the cycle length for both 

substitute and complement cases, we can claim 



www.manaraa.com

141 

Condition (30) states that the EOQ for complements under both the Cournot-type and 

Bertrand-type Models are greater than the EOQ for substitutes. Hence, the amplitude 

of cycle length for complements, that is the EOQ level for complements, is higher than 

that for substitutes. On the other hand, condition (31) states that the cycle length for 

substitutes are longer than that for complements. 

7. Concluding Remarks 

In this paper, we developed and analyzed two duopoly models for complements. 

From the first order necessary and the second order sufficient conditions, it was shown 

how the optimal inventory and pricing policies were derived. As a special C2ise, the 

symmetric demand and cost were assumed and the closed form inventory and pricing 

policies were obtained at equilibrium. Comparing substitutes with complements, we 

showed that the Bertrand-type competition was more efficient than the Cournot-type 

competition and the sellers tended to have higher EOQ for complements than that for 

substitutes. This paper can be extended by designing and analyzing different market 

behavioral assumptions, such as the Stackelberg model and the price leadership with 

several sellers or several products (see e.g.. Mas-Collel 1995; Varian 1992). Furthermore, 

nonlinear demand functions and inverse demand functions need to be addressed. 
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GENERAL CONCLUDING REMARKS 

Summary of Dissertation 

In this dissertation, inventory, investment, and pricing policies for lot-size decision 

makers were examined based on classical economic order quantity. Specifically, we fo­

cused on investment in setup operations, investment in quality improvement, and market 

dependent products such as substitutes and complements. We examined various impacts 

of investment and competition on inventory policies and derived managerial insights and 

economic implications. Throughout this dissertation, deterministic mathematical pro­

gramming Wcis used as the primary analysis technique and optimal policies were obtained 

through, this technique. 

In order to investigate the impact of investment, first, we focused on inventory and 

investment in quality improvement under ROI maximization. Next, we focused on inven­

tory and investment in setup operations under return on investment (ROI) maximiza­

tion. Also, we were investigating inventory and capital investment allocation policies in 

setup and quality operations under ROI maximization. Furthermore, we were comparing 

and contrasting inventory and investment policies under ROI maximization with those 
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policies under other economic/finance performance criteria such cis profit maximization. 

In order to investigate the impact of competition, on the other hand, we first designed 

and analyzed two duopoly models for two profit maximizing sellers when products are 

substitute, we also designed and analyzed two duopoly models for two profit maximizing 

sellers when products are complement. Furthermore, we compared and contrasted these 

models. 

In each chapter, there were several interesting managerial insights and economic 

implications and numerical examples were illustrated. We conclude this dissertation by 

summarizing contents in each chapter below. 

In Chapter 1, we constructed and analyzed inventory and investment in quality 

improvement policies under ROI maximization. Specifically, first, we showed how an 

ROI maximization problem is formulated. Next, the unique global optimal solution is 

determined by employing the primary criterion of ROI maximization and the secondary 

criterion of the prior order quantity minimization. In addition, we showed how the 

levels for the prior and posterior order quantities are reduced when it is optimal to 

invest additional money in quality improvement. 

In Chapter 2, we constructed and analyzed inventory and investment in setup oper­

ations policies under return on investment (ROI) maximization. Specifically, we showed 

how an ROI maximization problem is formulated and the unique global optimal solution 

is determined. Furthermore, we showed how the inventory level is reduced when it is 

optimal to invest additional money in setup operations. There are several extensions 

that will further enhance the importance and relevance of our model. 
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In Chapter 3, we constructed and analyzed inventory and capital investment allo­

cation policies under return on investment (ROI) maximization. Our model was con­

structed for a decision maker of a single product with a budget constraint in capital 

investment. We showed how the levels for the prior and posterior order quantities are 

reduced when it is optimal to invest additional money in setup cost reduction and/or 

quality improvement. An illustrated numerical example was provided in order to show 

sensitivity analysis of unit variable cost. 

In Chapter 4, we investigated inventory policies and investment in setup operations 

policies under profit maximization and ROI maximization. First, we studied how a 

profit maximization problem and an ROI maximization problem are formulated. Sec­

ond, we examined the unique global optimal solution by the primary criterion of profit 

maximization or ROI maximization and the secondary criterion of the order quantity 

minimization. Furthermore, by employing the secondary criterion, we compared and 

contrasted the unique global optimal solutions under profit and ROI maximization. Fi­

nally, under the assumption of rational and linear setup cost functions, we first obtained 

the unique global optimal solutions and provided the decision making rules to determine 

the unique global optimal solution. 

In Chapter 5, we designed and analyzed two duopoly models for substitute products. 

We showed how the optimal inventory and pricing policies were derived from the first or­

der necessary conditions for both the Cournot-type model and the Bertrand-type model. 

We further showed how the inventory and pricing policies were obtained at equilibrium. 

Next, under the cissumption of symmetric costs, we obtained the closed form inventory 
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and pricing policies at equilibrium. 

In Chapter 6, we developed and analyzed two duopoly models for complements. From 

the first order necessary and the second order sufficient conditions, it was shown how 

the optimal inventory and pricing policies were derived. As a special case, the symmet­

ric demand and cost were assumed and the closed form inventory and pricing policies 

were obtained at equilibrium. Comparing substitutes with complements numerically, we 

showed that the Bertrand-type competition was more efficient than the Cournot-type 

competition and the sellers tended to have higher EOQ for complements than that for 

substitutes. 

Future Research 

In this section, we proceed to describe our future research direction. Even though 

we have focused on inventory and investment policies as well as inventory and pricing 

policies in this dissertation, it would be of interest to study the effects of investment and 

pricing policies simultaneously in order to analyze inventory reduction. 

Furthermore, we can extend our single product inventory model with the capital 

budget constraint to several products that have economic relations (i.e., substitutes and 

complements). Furthermore, it would be of interest to analyze various scenarios such as 

rework and/or salvage value of the defective items by considering not only investment 

policies but also pricing policies. By relaxing traditional EOQ assumptions, our models 

include incorporation of more sophisticated features such as shortages, delivery lags, 

and stocheistic demand rates, etc. In addition, it is interesting to analyze inventory 
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and investment policies or inventory and pricing policies by employing more general 

relationships (i.e., nonlinear cases). 
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